您的当前位置:首页正文

基于滚动时域的无人机空战决策专家系统

来源:华佗小知识
2015年 11月 北京航空航天大学学报 Journal of Beijing University of Aeronautics and Astronautics November 2015 Vo1.41 NO.11 第41卷第11期 http://bhxb.buaa.edu.cn jbuaa@buaa.edu.CI1 DOI:10.13700/j.bh.1001—5965.2014.0726 基于滚动时域的无人机空战决策专家系统 傅莉 ,谢福怀 ,孟光磊 ,王东政 (1.沈阳航空航天大学航空航天工程学部,沈阳110136;2.沈阳航空航天大学自动化学院,沈阳110136 3.大连理工大学电子信息与电气工程学部,大连116024) 摘 要:针对专家系统法在空战应用中存在适应性差的缺陷,提出了一种基于滚动 时域控制(RHC)的机动决策算法对空战机动决策专家系统进行改进.首先,系统地分析了在 专家系统空战机动决策中的最优控制问题,完成了机动决策最优控制模型系统状态方程的建 立、控制约束的设计以及指标函数的建立.在此基础上,根据滚动时域法原理,将整个空战过程 分解为若干有限时域,并在每个时域内将空战机动决策问题视为初始条件不断更新的专家系 统机动决策最优控制模型的求解,反复进行直到空战结束.仿真结果表明,在专家系统法失效 的情况下,通过求解专家系统空战机动决策滚动时域最优控制模型,无人机能够快速地进行有 效的机动决策. 关 键 词:滚动时域控制(RHC);最优控制模型;机动决策;专家系统;空战 中图分类号:V271.4;TP273 文献标识码:A 文章编号:1001—5965(2015)11—1994—06 作为空战决策最核心的内容,无人战斗机 (UCAV)的机动决策问题目前已经随着无人机各 项关键技术的快速发展愈来愈受到世界各国的重 视.目前,常用空战机动决策方法有:矩阵对策法、 微分对策法、专家系统法、决策影响图法等 . 专家系统法是空战决策研究中提出最早、技术最 了 。。 .为了防止空战时出现系统失效的情况,本 文在已有的专家系统中引入滚动时域法 ,当系 统出现失效时,系统采用滚动时域代替专家系统 进行空战机动决策. 1 专家系统机动决策最优控制模型 的构建 1.1 空战机动决策专家系统基本结构 成熟的方法.专家系统是一种知识信息处理系统, 而不是数值信息计算系统 .其决策过程直接根 据专家知识进行推理,相对其他几种决策方法,专 家系统法不需要进行大量计算,对于瞬息万变的 空战机动决策专家系统主要由3个部分组 成,即知识库、机动库和推理机.当专家系统无人 战机进入备战状态时,机载传感器获得当前敌我 真实战场环境,能较快地做出反应,具有响应速度 快、结构简单的特点. 然而专家系统在空战机动决策上的应用也有 它自身不可避免的缺陷,由于专家系统知识库中 存储的知识都是固化的数据,空战时一旦出现系 统知识库未存储的空战态势,专家系统就失效 双方态势信息,由专家系统推理机将态势信息与 知识库中各个规则的条件进行匹配,直到找到与 态势信息相符的规则,根据该规则所对应的结论, 调用机动库中相应的飞行机动,并予以执行.当无 人战机执行完机动后,专家系统会按设定的时间 收稿日期:2014-11—19;录用日期:2015—02.13;网络出版时间:2015_04-o2 09:35 网络出版地址:WWW.cnki.net/kcms/detail/1 1.2625.V.20150402 0935.003.html 基金项目:国家自然科学基金(61074090);航空科学基金 通讯作者:傅莉(1968一),女,辽宁凤城人,教授,ffulli@163.COIn,主要研究方向为模式识别与智能系统. 引用格式:傅莉,谢福怀,盂光磊.等.基于滚动时域的无人执空战决策专象系统l|].北京航空航天大学学报,2015,41(11):1994— 1999.Fu L,Xie F H,Meng G L,et al An UAV air—combat decision expert system based on receding horizon control[J J.Journal of Beijing University of Aeronautics and Astronautics,2015,41(1 1):』994-1999(in Chinese). 第11期 傅莉,等:基于滚动时域的无人机空战决策专家系统 1995 间隔再次调用机载传感器获取下一时刻的态势信 息,然后再次进行决策,直至空战结束.由此可知, 可以将整个无人战机的空战过程分割成一个个离 散的时间域,每个时问域里,无人战机通过机动的 选择与调用,来完成该时域内的决策和无人战机 的飞行,这些机动的叠加就是无人战机的最终飞 行轨迹. 1.2最优控制模型的构建 通过以上对空战专家系统的分析,将整个空 战过程离散化,专家系统机动决策最优控制问题 可描述成方程组(式(1)~式(3))中最优控制序 列U(t)∈ ,t=t。,t 一,t 一 的求解,使得性能指 标J(x )最大 .其中, 为控制量比(t)的控 制约束,时间t。,t 一,t 一 分别为专家系统进行 决策的每一时刻. n—l J(x Utk)=∑F(x H )+6(x cf,tf) (1) ,( , ,t), (t。)= 。 (2) (t)∈ (3) n一1 式中:∑F(x H 。)为积分指标;6(xff' ) 为终端指标;膏=f(X,U,t), (t。)= 。为系统状 态方程;t。和Xto分别为初始时间和初始状态;t 和 分别为终端时刻和终端状态; =0,1,…,n一1. 1.2.1 系统状态方程描述 为了描述载机和目标机的相对运动,空战中 双方态势分别用状态向量 、 来表示,下标r 和b分别代表我方(红方)和敌方(蓝方). X =( ,Y ,z , ,0 , ,咖 ) i=r,b (4) 式中: 、Y 和 为地坐标系下战机的位置坐标; 为战机的速度;0 、砂 和咖 分别为在地坐标系中 战机的航迹倾斜角、航迹方位角和航迹滚转角. 忽略侧滑角的影响,且假设发动机推力沿着 飞行速度方向,则飞机在航迹坐标系上的质点动 力学方程为 V=g(n 一sin ) (5) 导(n 一COS 0) (6) 志 (7) 式中: 为飞行速度大小;V为速度变化率;0为 航迹倾斜角;rt 沿着飞行速度方向,通常称为切 向过载或轴向过载;n 和n:均垂直于飞行速度矢 量,法向过载n =√n:+n ;tO 和tO 分别为航迹 坐标系相对于地轴坐标系的转动角速度在航迹坐 l sin 0 cos sin sin c。s J gk=L =IL  cos 0s isni n co0 s sincos 0 s in lJ  嘲 1996 北京航空航天大学学报 统状态方程选取过载 、 和 作为控制变量, 所以可以通过设计这些参数的变化规律来控制战 机完成机动动作.对于战术动作库的设计,可以将 战术机动分解为这7种基本操纵动作中一种或几 种的叠加.在飞行过程中,战机根据空战态势、武 器发射条件等,为满足特定的战术要求,在特定的 态势和时间,切换7种基本动作,从而完成特定的 战术动作设计. 通过以上机动库设计原理和系统状态方程的 分析,由于机动库中过载n 、n 和n:这些参数的 变化规律都已经设计好,空战专家系统是通过机 动的选择和调用来实现对飞机状态 ,的控制,所 以这里的控制约束 指的是专家系统机动库,控 制量U(t)为机动库中的各个机动. 1.2.3 空战机动决策指标函数的建立 以我机位置为原点R(0),在地坐标系下对 两机空战态势关系进行分析,如图1所示. l, 2一目标方位角和目称进入角; Pb一我机速度矢量和敌机速度矢量; B一敌机位置;R(0)一我机位置;D--目标距离; D ̄m.x 我机雷达最大探测距离; DMmax一我机导弹最大不可逃逸距离 图1 双机空战态势关系 Fig.1 Relation of situation of two sides in air combat 空战目的都是发现、跟踪、击毁空中目标,使 其失去对我方形成威胁的能力.机载雷达和空空 导弹已成为了现代空战的主要探测和攻击武器, 空战态势优势函数的建立,应该从空战态势对战 机雷达跟踪区和导弹攻击区的影响这两方面进行 定量分析¨ “ .所以本文在建立态势优势函数 时,主要考虑角度优势函数、距离优势函数和能量 优势函数. 1)角度优势函数. 角度优势函数关系到我机对目标的有效跟 踪.当我机的目标方位角小时,我机导弹发射的离 轴角也越小,有利于提高导弹命中率,使我机对敌 机的威胁达到最大,实现我机对敌机的有效跟踪. 本文选取空空导弹不可逃逸离轴角砂 …为60。, 雷达探测最大角度 为85。,将目标方位角分 为雷达搜索区、导弹攻击不可逃逸区和雷达搜索 区以外3个区域,并构造角度优势函数: ().1一 85。<l S = 6 。 1一 0。≤I 【<60。 (17) 2)距离优势函数. 距离优势函数主要体现为敌机是否在我机导 弹的射程范围内.当目标线长度D远大于我机导 弹的最大不可逃逸距离D …时,可以认为我机的 距离优势很小,随着空战双方相对距离的减小,敌 机进人我机的导弹的射程范围内,我机的距离优 势逐渐增大,可以认为当D: 时距离 优势达到最大值,随着双距离的进一步减小,甚至 当目标线长度D小于我机导弹的最小不可逃逸 距离D …时,我机的距离优势开始逐渐减小并趋 于0.根据以上分析,距离优势函数为 5 :e一( D-D__o,2 (18) 式中 (19) 如果当D=D 或D=D …时,均有S = 0.95,则有正态分布标准差为 2(DM…一D …) (20) 3)能量优势函数. 战机能量优势函数主要与战机速度和高度有 关.战机的能量越大,则战机机动能力越强,使战 机在超视距空战中能尽快机动到对目标机实施打 击的最佳空战位置,而且在较大能量时,空空导弹 使用速度更大,对目标机实施攻击的成功率更高. 本文将能量看作战机动能与势能的和,定义战机 单位能量为 1/2 E=H+ (21) g 式中:日为战机当前高度.战机能量优势函数为 E S = E4 一 。.5≤ <2 (22) 丧 E r 5 第11期 傅莉,等:基于滚动时域的无人机空战决策专家系统 式中:E 为我方(红方)战机单位能量;E 为敌方 (蓝方)战机单位能量. 综合考虑角度和距离之间的相关关系,在此, 以乘积表示角度与距离的综合优势.最终可以得 出空战态势优势函数的计算公式为 S=K1‘S ·SD+ 2SE (23) 式中:K。和K 为加权系数,且有 。+K:=1(0< 1,K2<1). 结合以上所建立的空战态势优势函数,以任 意时刻我机态势优势值与敌机态势优势值的差值 作为我机进行机动决策的指标: F(x ,u ,x + )=S (t + )——Sb(t +1)(24) 式中:s (t )和s (t )分别为我机和敌机在 t 时刻的态势优势值;最优控制模型的积分指 rt—l 标∑F(x lf )体现整个空战过程中我机 相对于敌机的态势优势的累积. 2基于滚动时域控制的专家系统决 策控制方法与仿真验证 2.1 基于滚动时域控制的专家系统控制方法 滚动时域控制(Receding Horizon Control, RHC)是20世纪70年代由工业界首先构思出来 的一种控制方法,其核心是在线滚动优化,将广义 控制全局问题的求解转化为在线滚动进行的一系 列局部优化问题,使得计算复杂性和计算资源消 耗都大幅降低.滚动优化把整个RHC任务过程分 为一个个相互重叠(单步预测时是不重叠的)但 不断向前推进的优化区间,称为滚动时域.在某一 滚动时域的开始,用系统的当前状态作为初始条 件,在线求解该有限时域开环最优控制问题,得到 最优控制序列.并在该时刻,仅取最优控制序中的 第1个控制信号实际作用到系统中.在下一滚动 时域,重复以上过程.随着动态过程的延续,控制 算法推进预测时域向前滚动,从而形成滚动优化. 对于含状态约束以及输入约束等限制条件的系 统,在不知道目标未来运动信息的条件下,滚动时 域控制是一种有效的控制方法¨ .滚动时域控 制原理如图2所示. 通过以上分析,假设每一次决策之间的时间 间隔是固定的,定义任意起始时刻t 的滚动时域 为[t ,t +nat],n为滚动时域步长,△ 为决策时 间间隔,则图中[Ut ,Ut:_l l…,Ut: ]可表示 为[U U …,U ].根据第2节所建 立的专家系统空战机动决策最优控制模型,则求 _“t _“t -Ht k k+ k+2 图2滚动时域控制原理图 Fig.2 RHC schematic 解滚动时域内最优控制序列[“ U” …, “” ]的指标函数为 J(x u )= m∑F(:0 x 讪 , 2.2 仿真验证 设定空战初始条件为原专家系统中未定义的 空战态势,即原专家系统失效,通过原专家系统和 改进后专家系统的仿真对比,验证改进后的专家 系统具有更强的适应性.仿真初始条件如表1 所示. 表1仿真初始条件 Table 1 Initial COIlditions for simulation 图3和图4分别为原专家系统空战仿真结果 和滚动时域法改进后的专家系统仿真结果. 由图3可以看出空战开始,原专家系统就出 现失效状况,我机维持起始飞行状态,作匀速直线 运动,我机态势优势值也呈现递减的趋势,最终被 敌机击落. 图4为引进滚动时域法后的专家系统,在专 家系统决策出现失效的情况下,系统采用滚动时 域控制代替专家系统进行空战机动决策.如图4 所示,敌我空战开始时刻,专家系统出现失效,滚 动时域法求解最优控制机动.第1阶段,我机作偏 航纯跟踪机动,向敌机偏转同时保持一定的增速; 第2阶段,我机通过最大加速直飞行机动与敌机 拉开距离;第3阶段,当我机和敌机拉开一定的距 离,我机作最大过载左转弯机动,快速向敌机偏 北京航空航天大学学报 豆 蟊 m ㈣ ㈣ ㈣ 墨 艇 堡 航 ̄e/km (a)敌我空战轨迹 霖 称 时间/s (b)我机态势优势函数 图3原专家系统机动决策 Fig.3 Expert system maneuver decision E 接 班 堡 航程/km (a)敌我空战轨迹 蚓 称 称 时li ̄J/s (b)我机态势优势函数 图4 改进专家系统机动决策 Fig.4 Improved expert system maneuver decision 转;第4阶段,当我机角度向敌机偏转到一定角度 时,我机对敌机形成侧向攻击态势,由专家系统进 行决策,我机继续采用最大过载左转弯机动;第5 阶段,通过前两个阶段的最大过载左转弯机动,我 机与敌机形成迎头攻击态势,继续由专家系统进 行决策,我机采用偏航纯跟踪机动,实现对敌的跟 踪.由图4可知,引进滚动时域法后的专家系统, 在专家系统法失效的情况下,仍能做出有效的机 动,实现敌我态势的逆转,我机态势优势值呈递增 的趋势 3 结 论 本文建立了一套基于滚动时域的无人战机空 战决策专家系统.通过与原专家系统的仿真对比, 验证了改进后的系统在专家系统法失效的情况 下,能快速地进行自主决策,使我机有效地规避目 标威胁并达成攻击条件.基于滚动时域的无人战 机空战决策专家系统不仅保留了专家系统机动决 策法的优点,而且克服了专家系统法适应性差的 缺陷.综合分析可得基于滚动时域的无人战机空 战决策专家系统的特点为: 1)系统能充分发挥专家的经验优势,决策过 程不需复杂的算法计算,有利于提高机动决策的 实时性. 2)系统具有良好的可维护性和扩展性.对于 不同的机型,系统可以根据需要对知识库中的知 识进行增删、修改、扩充等操作. 3)系统具有更强的灵活性和适应性.系统综 合使用专家系统法和滚动时域法进行决策,在任 何的空战态势下,都能做出有效的机动决策. 除了实现对专家系统的改进,本文建立的专 家系统机动决策最优空战模型,对以后专家系统 的研究以及智能算法的引入都具有一定的借鉴 意义. 参考文献(References) [1]Galati D G Game theoretic target assignment strategies in con- petitive multi-team systems[D].Pittsburgh:University of Pitts— burgh,2004. [2]Imado F,Kuroda T.A method to solve missile-aircraft pursuit— evasion differential games[C]//Proceedings of the 16th IFAC World Congress.Laxenburg:IFAC,2005,16:176—181. [3]Virtanen K,Raivio T.Modeling pilot’s sequential maneuvering decisions by a muhistage influence diagram[J].Journal of Guid— ance,Control,and Dynamics,2004,27(4):665.677. [4]董彦非,郭基联,张恒喜.空战机动决策方法研究[J].火力 与指挥控制,2002,27(2):75-78. Dong Y F,Guo J L,Zhang H X.The methods of air combat ma- neuvering decision[J].Fire Control&Command Control,2002, 27(2):75_78(in Chinese) [5]赵威.基于专家系统的双机协同攻击决策技术研究[D].西 安:西北工业大学,2007. Zhao W.Based on expe ̄system coordination air fight decision research[D].Xi’an:Northwestern Polytechnical University, 2007(in Chinese). [6]Platts J T,Howell S E,Peeling E C,et a1.Increasing UAV intel— ligence through learning[C]//AIAA 3rd“Unmanned Unlimit— ed”Technical Conference,Workshop and Exhibit.Reston: 第11期 AIAA,2004,1:270—282. 傅莉,等:基于滚动时域的无人机空战决策专家系统 Design,2011,32(6):2096—2099(in Chinese). 1999 [7]Xiao L,Sun D,Liu Y,et a1.A combined method based on expert system and BP neural network for UAV systems fault diagnosis [13] 吴文海,周思羽,高丽.基于导弹攻击区的超视距空战态势 评估改进[J].系统工程与电子技术,2011,33(12): 2679-2685. Wu W H,Zhou S Y,Gao L.Improvements of situation assess- ment for beyond--visua1.-range air combat based on missile [C]∥2010 International Conference on Artiifcial Intelligence and Computational Intelligence.Piscataway,NJ:IEEE Press, 2010,3:3-6. [8] Xu B,Kurdila A,Stilwell D J.A hybrid receding horizon control method for path planning in uncertain environments[C]∥The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.Piscataway,NJ:IEEE Press,2009:4887-4892. launching envelope analysis[J].Journal of Systems Engineering and Electronics,2011,33(12):2679-2685(in Chinese). 张洪波,李国英,丁全心.超视距空战下的态势评估技术研 究[J]电光与控制,2010,17(4):9-13. Zhang H B,Li G Y,Ding Q X.Research on situation assess- [9]McGrew J S,How J P,Williams B,et a1.Air—combat strategy using approximate dynamic programming[J].Journal of Guid— ante,Control,and Dynamics,2010,33(5):1641—1654. ment in BVR air combat[J].Electronics Optics&Control, 2010,17(4):9—13(in Chinese). 付昭旺,李战武,强晓明.基于滚动时域控制的战斗机空战 机动决策[J].电光与控制,2013,20(3):20-29. Fu Z W,Li Z W,Diang X M.Tactical decision—making method [10]Fred A,Giro C,Michael F.Automated maneuvering decisions for airto air combat[R].Heston:AIAA,1987. [1 1]James S M.Real-time maneuvering decisions orf autonomous air combat『D].Massachusetts:Massachusetts Institute of Techno1. ogy,2008. based on receding horizon control for air combat[J].Electron- ics Optics&Control,2013,20(3):20—29(in Chinese). [12]马伟江,姚佩阳,周翔翔.改进的超视距空战态势评估方法 Bellingham J,Richards A,How J P.Receding horizon control of [J].计算机工程与设计,2011,32(6):2096-2099. Ma W J,Yao P Y,Zhou X X.Improved method of situation as— autonomous aerial vehicles[C]∥Proceedings of the American Control Conference,2002.Piscataway,NJ:IEEE Press,2002,5: 3741—3746. sessment in BVR air combat[J].Computer Engineering and An UAV air—combat decision expert system based on receding horizon control FU Li ,XIE Fuhuai ,MENG Guanglei ,WANG Dongzheng (1.Faculty o±Aerospace Engineering,Shenyang Aerospace University,Shenyang 110136,China; 2.School ofAutomation,Shenyang Aerospace University,Shenyang 110136,China; 3.Faculty of Electronic Information and Electrical Engineering,Dalian University of Technology,Dalian 116024,China) Abstract:Aiming at the poor adaptability of expert system in air combat,a maneuvering decision algo— rithm based on the receding horizon control(RHC)method was proposed to improve the air combat maneuve- ring decision—making expert system.Firstly.the optimal control problem was systematically analyzed in the air combat maneuvering decision—making expert system.The system state equation,the index function and the control constraints of the maneuvering decision—making optimal control model were established.On this basis, according to the principle of the RHC method,the whole air combat process was divided into some sequential ones with the finite time horizon.In each time horizon.the optimal control model of the maneuvering decision— making expert system was solved to conduct air combat maneuvering decisions with initial state updated.The process was repeated until the air combat was over.The simulation result shows that,through solving the RHC optimal control model of the air combat maneuvering decision—making expert system,the unmanned aerial vehicle(UAV)can rapidly take effective maneuvering decisions in the ease of expert system failure. Key words:receding horizon control(RHC);optimal control model;maneuvering decision;expert system;air combat 

因篇幅问题不能全部显示,请点此查看更多更全内容