您好,欢迎来到华佗小知识。
搜索
您的当前位置:首页Gauge theories on noncommutative spaces

Gauge theories on noncommutative spaces

来源:华佗小知识
0002 vNo 92 1v162110/0ht-pe:hviXraGaugetheoriesonnoncommutativespaces

AlbertSchwarz

Abstract.IreviewmyresultsaboutnoncommutativegaugetheoriesandabouttherelationofthesetheoriestoM(atrix)theoryfollowingmylectureonICMP2000.

InmylectureonICMP2000Igaveashortreviewofmyresultsonnoncom-mutativegaugetheoriesandtalkedinmoredetailaboutmyrecentpaper[9].HereI’llskipalldetailsreferringtopapers[1]-[13].I’lllistonlymainresultsofthesepapers.

Inthepaper[1]itwasshownthatgaugetheoriesonnoncommutativetoriappearnaturallyinconsiderationofcompactificationsofM(atrix)theory.Thesamelogiccanbeusedtoobtaingaugetheoriesonnoncommutativetoroidalorbifolds[14],[15],[11],[12].

Moreprecisely,ifGisasubgroupofthegroupofsymmetriesofanymodelwecanrestrictourselvestofieldsthatareG-invariantuptogaugeequivalence.ThismeansthatthechangeofafieldAundertheactionofanelementγ∈GcanbecompensatedforbygaugetransformationUγ.Formatrixmodels(i.e.inthecasewhenAisacollectionofmatricesandgaugetransformationsareunitarytransformations)thismeansthat(1)

γ(A)=UγAUγ−1

.

Usuallyfinitesizematricesdon’tsatisfythisequation;oneshouldreplace(Hermit-ian)matricesby(Hermitian)operatorsininfinite-dimensionalHilbertspaceEand

considerUγasunitaryoperatorsinthisspace.ThereexistsnoreasontoexpectthatUγλ=UγUλ,buttakingintoaccountthat(2)

(Uγλ−1·UγUλ)A(Uγλ−1·UγUλ)=A

itisnaturallytoassumethat(3)

Uγλ=eiπθ(γ,λ)UγUλ

Onecansay,thattheoperatorsUγspecifyaprojectiverepresentationofthe

groupG.InthecasewhenG=ZdtheassociativealgebraTd

algebraoffunctionsond-dimensionalθgeneratedbyoper-atorsUγcanbeinterpretedasthenoncom-mutativetorus.InotherwordsthespaceEcanbeconsideredasaTθd-module.

2ALBERTSCHWARZ

Wealwaysconsiderfinitelygeneratedprojectivemodules(directsummandsinfree

dn

modules(Tθ)).Innoncommutativegeometrythismeansthatweconsider”vectorbundles”overnoncommutativetori.

ThetorusTθisspecifiedbymeansofbilinearformθ(γ,λ)onZd;withoutlossofgeneralityonecanassumethatthisformisantisymmetric.Itwillbemorecon-venientforustosaythatanoncommutativetorusisdeterminedbyantisymmetricmatrixθjkcorrespondingtotheformθ(γ,λ)insomebasisofZd.IntermsofthismatrixnoncommutativetoruscanbeinterpretedasanalgebrawithunitarygeneratorsU1,...,UdsatisfyingrelationsUjUk=e2πiθjkUkUj.IfA=(A1,...,Ad)andthegroupZdactsonAbymeansoftranslations(i.e.γ(A)=A+γ),thenthesolutionoftheequation(1)canbeconsideredasaconnectiononnoncommu-tativetorusTθinthesenseofA.Connes[16],[17].(Thenotionofconnectionisdiscussedindetailattheendofthepaper.)IfourstartingpointisBFSSorIKKTmatrixmodel[18],[19],thentheaboveconstructionleadstoSUSYYang-Millsthe-oryonnoncommutativetorus[1].ReplacingZdwithsemidirectproductofZdandfinitegroupweobtaingaugetheoriesonnoncommutativetoroidalorbifolds.TheappearanceofnoncommutativegeometrycanbeexplainednotonlyfromtheviewpointofM(atrix)theory,butalsofromtheviewpointofstringtheoryaswasshowninaseriesofpapers[20]-[24],culminatingbySeiberg-Wittenpaper[25]thatcontainsverydetailedanalysisofrelationbetweenstringtheoryandgaugetheoryonnoncommutativespaces.

GaugetheoriesonnoncommutativetoriwerestudiedbyA.ConnesandM.Rieffel,especiallyintwo-dimensionalcase[26]-[28].Iobtainednewresultsaboutthesetheoriesfocusingmyattentiononproblemsrelatedtophysics.Alreadyin[1]itwasconjecturedthatMoritaequivalenceofalgebrasisrelatedtodualityin

ˆifthephysics.OnesaysthatanalgebraAisMoritaequivalenttothealgebraA

ˆ-modules.Inotherwords,categoryofA-modulesisequivalenttothecategoryofA

ˆ-modulesandAˆ-modulesintoA-weshouldbeabletotransferA-modulesintoA

modules;thiscorrespondenceshouldbenatural(foreveryA-linearmapϕ:E→E′

ˆ-linearmapϕˆ→Eˆ′ofcorrespondingAˆ-ofA-modulesshouldbedefinedanAˆ:E

modules;onerequiresthatthecorrespondenceϕ→ϕˆtransformscompositionofmapsintocompositionofmaps).However,toprovethatgaugetheoriesoverAare

ˆweshouldbeabletotransferalsoconnectionsonA-relatedtogaugetheoriesonA

ˆ-modules.IintroducedanewnotionofgaugeMoritamodulestoconnectionsonA

equivalence(inoriginalpaper[2]Iusedtheterm”completeMoritaequivalence”)andprovedthatgaugeMoritaequivalenceofalgebrasimpliesphysicalequivalence

d

ofcorrespondinggaugetheories.Itisprovedin[2]thatnoncommutativetoriTθanddTθˆaregaugeMoritaequivalentifandonlyifthereexistsamatrix

󰀁󰀂AB

(4)

CDbelongingtoSO(d,d,Z)andobeying(5)

ˆ=(Aθ+B)(Cθ+D)−1θ

HereA,B,C,Dared×dmatricesandSO(d,d,Z)standsforthegroupof2d×2d

matriceswithintegerentriesthatareorthogonalwithrespecttoquadratieformx1xd+1+...+xdx2dhavingsignature(d,d).(Thefactthattherelation(5)impliesMoritaequivalencewasprovedinearlierpaper[4]writtentogetherwithM.Rieffel.)

GAUGETHEORIESONNONCOMMUTATIVESPACES3

EquivalenceofgaugetheoriesonnoncommutativetoriTθandTθˆwasstudiedindetailin[2],[6],[7],[8].ItiscloselyrelatedtoT-dualityinstringtheory;thisrelationwasthoroughlyanalyzedin[5].Thisanalysisled,inparticular,tothediscoveryofpossibilitytotradenoncommutativityparameterforbackgroundfieldintheexpressionsforBPSenergies.(Almostsimultaneouslythisfactwasfoundin[25]atthelevelofactionfunctionals;itwascalledbackgroundindependence.)

Thepapers[6],[7],[8],[13]aredevotedtothestudyofBPSfieldsandBPSstatesinSUSYgaugetheoriesonnoncommutativetori.AnalysisofBPSspectrabymeansofsupersymmetryalgebrawasperformedin[7].AnotherwaytostudyBPSstatesisbasedongeometricquantizationofmodulispacesofclassicalconfigurationshavingsomesupersymmetry(BPSfields).Onecanidentify1

states.

InstantonsonnoncommutativeR4wereanalyzedin[3]bymeansofgener-alizationofADHMconstruction.Themoststrikingfeatureofnoncommutativeinstantonsistheabsenceofsmallinstantonsingularityinmodulispaceofnoncom-mutativeinstantons.Instantonsonnoncommutativetoriwerestudiedin[10];inparticular,weconstructedanoncommutativeanalogofNahmtransform.Instan-tonscanbecharacterizedas1

4BPS

fieldsand1

2BPS

4ALBERTSCHWARZ

assumethateverylinearcombinationofmatrixelementsofθhavingintegercoeffi-cientsisirrational.)Thisremarkcanbeusedalsoinmanyothercases;itconfirmstheideathatnoncommutativetoriwithirrationalθaresimplerthatcommutativetori.

Gaugetheoriesonnoncommutativetoroidalorbifoldswerestudiedin[11],[12].Fairlycompleteanalysisofmodules,ofconstantcurvatureconnectionsandcorre-d

spondingmodulispaces,ofMoritaequivalenceisgivenforTθ/Z2;however,themethodsdevelopedin[11],[12]workalsoforothertoroidalorbifolds.

AllresultswementionedarebasedonthenotionofconnectiononA-module.Thereexistdifferentdefinitionsofthisnotion,butallofthemarebasedonthesameidea:aconnectionshouldsatisfyLeibnizrule.Ifann-dimensionalLiealgebraLactsonassociativealgebraAbymeansofinfinitesimalautomorphisms(derivations)wecandefineaconnectionon(left)A-moduleEasacollectionofnlinearoperators∇i:E→E,i=1,...,nobeyingtheLeibnizrule:

∇i(ae)=a·∇ie+δia·e,

wherea∈A,e∈E,andδ1,...,δnarederivationscorrespondingtoelementsofabasisofLiealgebraL.(Notice,thatoperators∇idon’tcommutewithmulti-plicationbya∈A,i.e.theyareC-linear,butnotA-linear.However,if∇i,∇′i

(i=1,...,n)aretwoconnectionsthedifference∇i−∇iisA-linear;inotherwords∇′i−∇iisanendomorphismofE.)

Whenweconsidernoncommutativetoriweshoulddefineconnectionsusing

d

d-dimensionalcommutativeLiealgebraactingonTθbymeansoftranslations.

IfwewouldliketodefineconnectionsintermsofcovariantdifferentialinsteadofcovariantderivativeweshouldassumethatthealgebraAisaZ2-gradedassociativealgebraequippedwithaparityreversingderivationQ:A→A.ThestandardassumptionisthatQ2=0(thenAiscalledagradeddifferentialalgebra).Howeveritisshownin[9]thatonecanrelaxthisassumptionrequiringonlythatQ2a=[ω,a].(HereωisafixedelementofAobeyingQω=0.)IfAisanassociativealgebraequippedwithanoperatorQofthiskind(aQ-algebraistheterminologyof[9])wecandefineaconnectionon(left)A-moduleEasanlinearoperator∇:E→EobeyingtheLeibnizrule:

D(ae)=(−1)degaaDe+Qa·e.

Thestandardtheoryofconnections(includingthenotionofCherncharacter)canbegeneralizedtothecaseofmodulesoveraQ-algebra.IfPisamoduleoverQ-algebraAand∇PisaconnectiononPwecandefineastructureofQ-algebra

ˆ=EndAPbytheformulaQϕ˜=[∇P,ϕ].(HereEndAPstandsforanalgebraonA

ofendomorphismsofA-moduleP,i.e.foranalgebraofA-linearmapsofPinto

ˆisMoritaequivalenttoA,itself.)UndercertainconditionsonPthealgebraA

ˆ-modulesandviceversa.(IfAhasaunitwei.e.wecantransferA-modulesintoA

shouldrequirethatAconsideredasleftA-moduleisadirectsummandofPNforsomeNandPisprojective)Usingtheconnection∇Pwecantransferconnections

ˆ-modules.Thisoperationper-onA-modulestoconnectionsoncorrespondingonA

ˆ-modulesmitsustoextendtheequivalencebetweencategoriesofA-modulesandA

toanequivalenceofcorrespondinggaugetheories.Thisgivesaverygeneraldual-itytheorem;SO(d,d,Z)dualityofgaugetheoriesonnoncommutativetoricanbederivedfromthisgeneraltheorem[9].

GAUGETHEORIESONNONCOMMUTATIVESPACES5

References.

1.A.Connes,M.Douglas,andA.Schwarz,NoncommutativeGeometryandMatrixTheory:CompactificationonTori,JHEP02(1998),3-38

2.A.Schwarz,MoritaEquivalenceandDuality,Nucl.Phys.B534(1998),720-738.

3.N.NekrasovandA.Schwarz,InstantonsonNoncommutativeR4and(2,0)SuperconformalSix-dimensionalTheory,Comm.Math.Phys.198(1998),6-703.

4.M.RieffelandA.Schwarz,MoritaEquivalenceofMultidimensionalNon-commutativeTori,Intl.J.ofMath10(2)(1999),2-299

5.B.PiolineandA.Schwarz,MoritaEquivalenceandT-Duality,JHEP9(21)(1999),1-16

6.A.KonechnyandA.Schwarz,1/4-BPSStatesonNoncommutativeTori,JHEP.30(1999),1-14

7.A.KonechnyandA.Schwarz,SupersymmetryAlgebraandBPSStatesofsuperYang-MillsTheoriesonNoncommutativeTori,Phys.Lett.B453(1999),23-29

8.A.KonechnyandA.Schwarz,BPSStatesonNoncommutativeToriandDuality,Nucl.Phys.B550(1999),561-584.

9.A.Schwarz,NoncommutativeSupergeometryandDuality,Lett.Math.Phys.50(4)(1999),309-321

10.A.Astashkevich,N.NekrasovandA.Schwarz,OnNoncommutativeNahmTransform,Comm.Math.Phys.211(1)(2000),167-182.

11.A.KonechnyandA.Schwarz,ModuliSpacesofMaximallySupersymmet-ricSolutionsonNoncommutativeToriandNoncommutativeOrbifolds,JHEP09(2000),1-23.

12.A.KonechnyandA.Schwarz,CompactificationofM(atrix)TheoryonNoncommutativeToroidalOrbifolds,Nucl.Phys.B591(3)(2000),667-684.

13.A.AstashkevichandA.Schwarz,ProjectiveModulesOverNoncommutativeTori:ClassificationofModuleswithConstantCurvatureConnection,JournalofOperatorTheory(inpress).

14.M.Douglas,D-branesandDiscreteTorsion,hep-th/9807235.

15.P.M.Ho,Y.Y.WuandY.S.Wu,TowardsNoncommutativeGeometricApproachtoMatrixCompactification,Phys.Rev.D58(1998),26006.

16.A.Connes,C*-algebresetGeometrieDifferentielle,C.R.Acad.Sci.Paris290(1980),599-604.

17.A.Connes,NoncommutativeGeometry,AcademicPress,661pp.

18.T.Banks,W.Fischler,Shenker,andI.Susskind,M-theoryasaMatrixModel:aConjecture,Phys.Rev.D55(1997),5112.

19.N.Ishibashi,H.Kawai,I.Kitazawa,andTsuchiya,ALarge-NeducedModelasSuperstring,Nucl.Phys.B492(1997),467-491.

20.M.DouglasandC.Hull,D-branesandNoncommutativeTorus,JHEP02(1998),008

21.Y.-K.E.CheungandM.Krogh,NoncommutativeGeometryfrom0-BranesinaBackgroundBField,Nucl.Phys.B528(1998),185.

22.C.-S.ChuandP.-M.Ho,NoncommutativeOpenStringandD-Brane,Nucl.Phys.B550(1999),151;ConstrainedQuantizationofOpenStringinBackgroundBFieldandNoncommutativeD-Brane,Nucl.Phys.B568(2000),447.

23.V.Schomerus,D-BranesandDeformationQuantization,JHEP06(1999),030.

6ALBERTSCHWARZ

24.F.Ardalan,H.ArfaeiandM.Sheikh-Jabbari,MixedBranesandM(atrix)TheoryonNoncommutativeTorus,PASCOS98;NoncommutativeGeometryfromStringandBranes,JHEP02(1999),016;DiracQuantizationofOpenStringsandNoncommutativityinBranes,Nucl.Phys.B576(2000),578-596.

25.N.SeibergandE.Witten,StringTheoryandNoncommutativeGeometry,JHEP09(1999),032.

26.A.ConnesandM.Rieffel,Yang-MillsforNoncommutativeTwo-Tori,Con-temporaryMath.66(1987),237-266.

27.M.Rieffel,ProjectiveModulesoverHigher-dimensionalNoncommutativeTori,Can.J.Math.,Vol.XL,No.2(1998),257-338.

28.M.Rieffel,CriticalPointsofYang-MillsforNoncommutativeTwo-Tori,J.Diff.Geom.,31(1990),535.

DepartmentofMathematics,UniversityofCaliforniaatDavis,Davis,CA95616E-mailaddress:schwarz@math.ucdavis.edu

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- huatuo0.cn 版权所有 湘ICP备2023017654号-2

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务