www.elsevier.com/locate/corsci
Theeffectofsensitizingtemperatureonstresscorrosioncrackingoftype316austeniticstainlesssteelinhydrochloricacidsolution
RokuroNishimuraa,*,IingMusalamb,YasuakiMaedaaabDepartmentofAppliedMaterialsScience,CollegeofEngineering,OsakaPrefectureUniversity,
1-1Gakuen-cho,Sakai,Osaka599-8531,Japan
ResearchandDevelopmentCentreforMetallurgy,KompleksPUSPIPTEK,Serpong,Tangerang,
Indonesia
Received17May2001;accepted5June2001
Abstract
Thestresscorrosioncracking(SCC)ofacommercialausteniticstainlesssteeltype316wasinvestigatedasafunctionofsensitizingtemperature(750–1300K)andtesttemperature(333–373K)in0.82kmol/m3hydrochloricacid(HCl)solutionbyusingaconstantloadmethod.Fromtheappliedstressdependenceofthreeparameters(iss:steadystateelongationrate,tss:timeintervalofSCC-dominatedfailure,tf:timetofailure),therelationshipsbetweenappliedstressandthethreeparametersweredividedintothreeregionsthataredominatedbyeitherstress,SCCorcorrosion.IntheSCC-dominatedregion,thelogarithmofisswasalinearfunctionofthelogarithmoftfirrespectiveofappliedstressandtesttemperature,althoughitsslopedependeduponsensitizingtemperature.Thisresultshowedthattheissbecameausefulparameterforpredictionoftfaswellasthecaseofthesolutionannealedspecimens.Fur-thermore,atthemostseveresensitizationwithasensitizingtemperatureofaround1000K,theslopeofthelinearfunctionoflogissvs.logtfshowedaminimum,thevalueoftss=tfwasamaximumandthefractureappearancewasanintergranularmode.Onthebasisoftheresultsobtained,theeffectofsensitizationonSCCwasdiscussedincomparisontotheresultsforthesolutionannealedtype316andaqualitativeintergranularSCC(IGSCC)mechanismwasinferred.Ó2002ElsevierScienceLtd.Allrightsreserved.
Keywords:Austeniticstainlesssteeltype316;Sensitization;Stresscorrosioncracking;Prediction;Steadystateelongationrate;Corrosionelongationcurve;IGSCCmechanism
*Correspondingauthor.Tel./fax:+81-722-54-9323.
E-mailaddress:nishimu@ams.osakafu-u.ac.jp(R.Nishimura).
0010-938X/02/$-seefrontmatterÓ2002ElsevierScienceLtd.Allrightsreserved.PII:S0010-938X(01)00117-2
1344R.Nishimuraetal./CorrosionScience44(2002)1343–1360
1.Introduction
Inapreviouspaper[1],thestresscorrosioncracking(SCC)oftheausteniticstainlesssteeltype304sensitizedintherangeof800–1300Kfor86.4kswasin-vestigatedin0.82kmol/m3hydrochloricacid(HCl)solutionasfunctionofappliedstress(r)andtesttemperaturebyusingaconstantloadmethod.Fromtheresultsobtained,itwasfoundthatthesteadystateelongationrate(issm/s)obtainedfromthecorrosionelongationcurvebecametherelevantparameterforthepredictionoftimetofailure(tf).However,theslopeofthelinearequationbetweenlogissandlogtfchangedwithsensitizingtemperatureandbecamealwayssmallerthanthatforthesolutionannealedspecimens,theslopesofwhichwereÀ1underaconstantappliedstresscondition(butenvironmentvariable)andÀ2underaconstantenvironmentcondition(butrvariable)[2,3].Itwasalsofoundthatthefractureappearance(transgranularorintergranular),theratioofthetimeintervalofSCC-dominatedfailure(tss)totfandSCCsusceptibilitydependeduponsensitizingtemperature.Toexplaintheseresults,wequalitativelyinferredtheintergranularSCC(IGSCC)mechanism,inwhichthegrainboundarysliding(GBS)wasthekeyfactor.
ItwasalreadyconfirmedthatalthoughtheSCCsusceptibilityofthesolutionannealedtype316wasmuchsmallerthanthatofthesolutionannealedtype304in0.82kmol/m3HCland0.82kmol/m3sulfuricacid(H2SO4)solutions[2–4],theirSCCbehaviorcouldbeexplainedwiththeproposedTGSCCmechanism[5]irrespectiveofthedifferencesinanionspeciesandthematerials.However,itwasnotclearwhethertheeffectofsensitizationontheSCCbehavioroftype316becomesthesameasthatofthesensitizedtype304.ThefirstpurposeofthepresentpaperwastoelucidatewhethertheuseofissastheparameterofSCCpredictiondescribedabovecanbeappliedtotheausteniticstainlesssteeltype316sensitizedatvarioustemperaturefor86.4ksaswellasthesensitizedtype304[1].Inaddition,fromthecomparisonbetweentheresultsofthesensitizedandthesolutionannealedtype316specimens,thesecondpurposewastoclarifywhetherornottheIGSCCmechanismproposedforthesensitizedtype304couldbeappliedtotheSCCbehaviorofthesensitizedtype316specimens.
2.Experimental
Thespecimensusedwereacommercialtype316austeniticstainlesssteel(yieldstrength:333MPaandultimatetensilestrength:7MPa),whosegeometryforSCCexperimentswasshowninFig.1.Thechemicalcomposition(mass%)wasasfollows:C0.054,Si0.67,Mn1.38,P0.030,S0.005,Ni11.16,Cr17.21,Mo2.21.Thespecimensweresolutionannealedat1373Kfor3.6ksunderanargonatmosphereandthenwaterquenched,whichwerecalledthesolutionannealedspecimens.Fur-therthesolutionannealedspecimensweresensitizedattemperaturesintherangeof750–1300Kfor86.4ks(24h)undertheargonatmosphereandthenwaterquenched.Priortotheexperiments,thesensitizedandsolutionannealedspecimenswerepol-ishedto1000gritemerypaper,degreasedwithacetoneinanultrasoniccleanerandwashedwithdistilledwater.Afterthepretreatment,thespecimenswereimmediately
setintoaSCCcell.Thetestsolutionusedwas0.82kmol/m3HClsolution,andwaspreparedfromdistilledwaterandguaranteedgradereagent.Thetesttemperaturewasusedintherangeof333–373K,butmainly353Æ0:5K.Allexperimentswerecarriedoutunderanopencircuitcondition.
Alever-typeconstantloadapparatus(leverratio1:10)towhichthreespecimenscanbeseparatelyandsimultaneouslyattachedwasusedwithacoolingsystemonthetoptoavoidevaporationofthesolutionduringexperiments.Thespecimenswereinsultedfromrodandgripbysurfaceoxidizedzirconiumtube.AchangeinelongationofthespecimensundertheconstantstressconditionwasmeasuredbyaninductivelineartransducerwithanaccuracyofÆ0.01mm.3.Results
3.1.Corrosionelongationcurve
Fig.2showsarepresentativeexampleofthecorrosionelongationcurvesatvariousconstantappliedstressesforthetype316specimenssensitizedat923Kfor86.4ksin0.82kmol/m3HClsolutionat353K.Thecorrosionelongationcurveswerefoundtoconsistofthreeregionsuptofailurewithaninitialsuddenriseofelongation;primary,secondaryandtertiaryregionsaswellasthoseofthesolutionannealedspecimens(type304andtype316)[2–4]andthesensitizedtype304spec-imens[1]obtainedunderthesameexperimentalconditions.Fromthecurves,wegotthreeparametersthatarethesteadystateelongationrate(iss¼I=tm/s)inthesec-ondaryregion,thetimeintervalofSCC-dominatedfailureorthetransitiontime(tss)betweenthesecondaryandtertiaryregions,andthetimetofailure(tf).Thetssisthetimewhenanelongationstartstodeviatefromalinearincreaseinthesecondaryregion.Asalreadyreported,whenthefailureofthespecimenstakesplacebySCC,thethreeregionsinthecorrosionelongationcurve,whichreflectsonSCCprocessuptofailure,correspondtocracknucleation,steadycrackpropagationandterminalcrackpropagationperiods,respectively[1–4].
3.2.Appliedstressdependenceofthreeparameters(iss,tf,tss)
Fig.3showsarepresentativeexampleofappliedstress(r)vs.logtfcurveforthespecimenssensitizedat923Kfor86.4ksin0.82kmol/m3HClsolutionat353K,
wherethedashedlineistheresultforthesolutionannealedspecimensunderthesameexperimentalcondition.Therelationshipforthesensitizedspecimenswasdividedintothreeregionsaswellasthoseforthesolutionannealedspecimens(type304andtype316)[2–4]andforthesensitizedtype304specimens[1],whichweredesignatedbyarabicnumerals1–3inFig.3.Themaximumappliedstress(rmax)inregion2becamelargerforthesensitizedspecimensthanforthesolutionannealedspecimens,whiletheminimumappliedstress(rmin)inregion2becamethesameasthatforthesolutionannealedspecimens.Thedifferenceintfbetweenthesensitizedandthesolutionannealedspecimensinregion2tendedtobecomelargewithincreasingr.Fig.4showstherelationshipbetweenrandlogissforthespecimenssensitizedat923K,wherethedashedlineistheresultforthesolutionannealedspecimens.ItwasfoundthattherelationshipwasalsodividedintothreeregionscorrespondingtothoseinFig.3,showingthatthedistinctionbetweenregions2and3becameclearercomparedtothatinFig.3.Inaddition,thevalueofissinregion2becamesmallerthanthatforthesolutionannealedspecimensatanappliedstressoflessthanabout400MPa,whereasthevalueoftfbecameshortincomparisontothatforthesolutionannealedspecimensasshowninFig.3.
Fig.5showstherelationshipbetweenrandtheratiotsstotfforthespecimenssensitizedat923K,wherethedashedlineistheresultforthesolutionannealedspecimens.Thevalueoftss=tfforthesensitizedspecimensinregion2heldconstantindependentofr,butbecamelargerthanthatforthesolutionannealedspecimens.Ontheotherhand,thevaluesinregions1and3becamelargerthanthatinregion2.Withregardtotheothersensitizedspecimens,furthermore,theirappliedstressde-pendencesofthethreeparametersweresimilartothatforthesensitizedspecimens
(923K,86.4ks),althoughthermaxandthevalueoftss=tfweredependentuponsensitizingtemperatureasdescribedbelow.
Fromtheappliedstressdependenceofthethreeparametersforthesolutionan-nealedandsensitizedspecimens,thethreeregions(1to3)forthesensitizedspeci-menswereconsideredtocorrespondtothestress-dominated,SCC-dominatedandcorrosion-dominatedregions,respectively,asalreadyreported[1–4].Fig.6showsthemaximumstress(rmax)andtheminimumstress(rmin)intheSCC-dominatedregion(region2)asafunctionofsensitizingtemperature,wherethetrianglesinFig.6standforthoseofthesolutionannealedspecimens.Thermaxbecamelargerthanthatforthesolutionannealedspecimensinthesensitizingtemperaturerangeof750–1250Kandshowedamaximumatasensitizingtemperatureofaround1000K.Ontheotherhand,therminkeptconstantindependentofsensitizingtemperature,whichwasthesameasthatforthesolutionannealedspecimens.Itwasconfirmedbyusingatensilemachinethatthebehavioroftheultimatetensilestrengthatroomtem-peratureforthespecimenssensitizedatvarioussensitizingtemperatureshadthesimilartendencyasthatofthermaxinFig.6,sothattheincreaseinthermaxwasrelatedtothatintheultimatetensilestrengthaswellasthecaseofthesensitizedtype304specimens[1].
Fig.7showsthevalueoftss=tfintheSCC-dominatedregionasafunctionofsensitizingtemperature,wherethetriangleinFig.7standsforthatofthesolution
annealedspecimens.Thevalueoftss=tfbecamelargerthanthatforthesolutionannealedspecimensinthesensitizingtemperaturerangeof750–1250Kandshowedamaximumatasensitizingtemperatureofaround1000K,correspondingtothatofrmaxinFig.6.Basically,theSCCbehaviorobtainedforthesensitizedtype316specimenswasconcludedtobecomethesameasthatofthesensitizedtype304,withregardtothebehaviorofrmax,rminandthevalueoftss=tf.3.3.Testtemperaturedependenceofthreeparameters
Toinvestigateatesttemperaturedependenceofthethreeparametersforthesensitizedspecimens,aconstantrintheSCC-dominatedregionwasused.Fig.8
showsarepresentativeexampleoftherelationshipsbetweenthreeparametersandareciprocaloftesttemperatureforthesensitizedspecimen(923K,86.4ks)underaconstantrof490MPa.Thelogtfandlogissbecameagoodstraightlineagainstareciprocaloftesttemperature,whilethevalueoftss=tfheldconstantindependentoftesttemperatureandwasthesameasthatobtainedasafunctionofrinFig.5.Thesimilarresultswereobtainedfortheothersensitizedspecimens.Althoughthevalueoftss=tfdependeduponsensitizingtemperature,itssensitizingtemperaturedepen-dencebecamethesameasthatinFig.7.3.4.Fractureappearances
Fig.9showstherepresentativeSCCfractureappearancesofthesensitizedspecimens.Thefractureappearance(a)ofthesensitizedspecimens(923K,86.4ks,r¼392MPa,Â1000)wasentirelyintergranular,whichwasthesameasthatofthespecimenssensitizedat1023Kfor86.4ks.However,that(b)ofthesensitizedspecimens(1123K,86.4ks,r¼392MPa,Â1000)waspredominantlytransgranular.Thesamefractureappearancewasobtainedforthespecimenssensitizedatasen-sitizingtemperatureofabove1123Kandbelow823K.
R.Nishimuraetal./CorrosionScience44(2002)1343–13601351
Fig.9.Therepresentativefractureappearancesofthesensitizedtype316,where(a)923K,86.4ksand(b)1123K,86.4ks(Â1000).
4.Discussion
4.1.Predictionoftimetofailure
Fig.10showsarepresentativeexampleoftherelationshipbetweenlogissandlogtf(r:variable)forthespecimenssensitizedat923K,whichisreplottedfromFigs.3and4.ThedashedlineinFig.10istheresultintheSCC-dominatedregionforthesolutionannealedspecimens.ItwasfoundthattherelationshipintheSCC-domi-natedregionbecameagoodstraightlinewithaslopesmallerthanthat(À2)forthesolutionannealedspecimens.Suchastraightlinecouldbeapplicabletotherelationshipsfortheothersensitizedspecimens,althoughtheirslopesdependeduponsensitizingtemperature.Hencewegotthefollowingequationforthesensitizedspecimens,
logiss¼ÀalogtfþC1
ðr:variableÞ
ð1Þ
wheretheslope,Àa,dependsuponasensitizingtemperatureandC1isaconstantdependingontheenvironmentalfactors(pH,testtemperature,concentrationandsoon)andsensitizingtemperature.Fig.11showsthevalueofainEq.(1)asafunctionofsensitizingtemperature,wherethetriangleisthatforthesolutionannealedspecimens.Thevalueofaforthesensitizedspecimensbecamesmallerthanthatforthesolutionannealedspecimens(a¼2)inthesensitizingtemperaturerangeof750–1200K,showingtheminimumatasensitizingtemperatureofaround1000K.Fig.12showsarepresentativeexampleoftherelationshipbetweenlogissandlogtf(r:constant)forthespecimenssensitizedat923K,whichisreplottedfromFig.9.ThedashedlineinFig.12istheresultforthesolutionannealedspecimens.Itwasfoundthattherelationshipalsobecameagoodstraightline.Theothersensitized
specimenshadasimilarlinearfunctionasthatinFig.12.Therefore,weobtainedthefollowingequation,
logiss¼ÀblogtfþC2
ðr:constantÞ
ð2Þ
wheretheslope,Àb,dependsuponasensitizingtemperatureandC2isaconstantdependingontheenvironmentalfactorsandsensitizingtemperature.Fig.13showsthevalueofbinEq.(2)asafunctionofsensitizingtemperature,wherethetriangleinFig.13isthatforthesolutionannealedspecimens.Thevalueofbwasfoundtobecomesmallerthanthat(b¼1)forthesolutionannealedspecimensinthesensi-tizingtemperaturerangeof750–1200K,showingtheminimumatasensitizingtemperatureofaround1000K.
Theabovelinearequationsshowthattheissofthesensitizedtype316specimensbecomesausefulparameterforpredictionoftfaswellasthesensitizedtype304specimens,andthesolutionannealedtype304andtype316specimens,becausetheisscanbeobtainedatatimewithin10–20%oftffromthecorrosionelongationcurve.
Hereitshouldbeemphasizedthattheslopesofthelinearequationsdependeduponthedegreeofsensitizationaswellasthoseofthesensitizedtype304,althoughtheslopesofthesolutionannealedspecimensheldconstantirrespectiveoftheanion
À
speciessuchasClÀandSO24andthematerials(type304andtype316)[2–4].4.2.Effectofsensitization
ThemaindifferencesintheSCCbehavioroftype316betweenthesolutionan-nealedandthesensitizedspecimensaresummarizedbelow:
(a)thermaxandthevalueoftss=tfintheSCC-dominatedregionarelargerforthesensitizedspecimensthanforthesolutionannealedspecimens,
(b)thevaluesofaandbinEqs.(1)and(2)aresmallerforthesensitizedspecimensthanforthesolutionannealedspecimens,
(c)thefractureappearanceisintergranularinthevicinityofthesensitizingtem-peraturearound1000Kandistransgranularforthesolutionannealedspecimens.Theseresultsarethesameasthoseobtainedforthesensitizedtype304underthesameexperimentalconditions[1].
Itiswellknownfortheausteniticstainlesssteelsoftype304andtype316thattheCrcarbidesandCrdepletionzoneareformedat/alongthegrainboundariesby
R.Nishimuraetal./CorrosionScience44(2002)1343–13601355
sensitization[6],thedegreeofwhichdependsuponsensitizingtemperature.ItisevidentthatthedifferencesdescribedabovearecausedbyeithertheformationofCrcarbidesandCrdepletionzoneorlittleformation.ItisconsideredthatCrcar-bidescouldactasanobstacleofdislocationmovement[7],bywhichthesensitizedmaterialswouldbecomeharderthanthesolutionannealedmaterial,similarlytoprecipitationhardeningmaterials.Thiswouldleadtotheincreaseintheultimatetensilestrengthofthesensitizedspecimens,whichispresumedtocontributetotheincreaseinrmax.Inthecaseofthesolutionannealedspecimens,thegrainboundarieswithlittleCrcarbidesdonotserveastheobstacleofthedislocationmovementandhencethedislocationscanmoveoverseveralgrainsbyappliedstress.TheCrdepletionzoneservesasapreferentialsiteforcorrosionattack,whilethepreferentialsiteofthesolutionannealedspecimensisslipstepsemergingonthesurface.
Onthebasisoftheconsiderationdescribedabove,thesensitizingtemperaturedependenceofthevalueoftss=tfisqualitativelyrelatedtootherfactorsasfollows.Theappliedstress,r,ispresentedasWload=Ainitial,whereWloadisaconstantloadandAinitialistheinitialcrosssectionalareaofthespecimens,whileatruestress(rtrue)attss,ispresentedasWload=Ass,whereAssisthecrosssectionalareaattss.ThertruewouldhaveaconstantvalueindependentofWloadforeachsensitizedspecimensbecauseoftheconstantvalueoftss=tfintheSCC-dominatedregion,butitwouldincreasewiththeincreaseinrmax,dependinguponthesensitizingtemperature.UnderaconstantloadconditionðWload¼constantÞ,itwasconsideredthattheratiooftsstotfforthesolutionannealedspecimenscorrespondstotheratioofLsstoLfðLss=LfÞ[8],whereLssisthecrackpropagatinglengthuntiltssandLfisthetotalcrackpropagatinglengthuptotf.Therefore,aslongastheidenticalgeometryofthespecimensisused,theLssneedstoincreasefortheincreaseinrtrue,thatis,thereductioninAss.ThisimpliesthatthevalueofLss=Lfwouldincreaseproportionallywiththeincreaseinrmax(orrtrueattss)andconsequentlythevalueoftss=tfshouldincreasecorre-spondingly.
Thepreferentialsitesforcorrosionattackaretheslipstepsforthesolutionan-nealedspecimensandtheCrdepletionzoneforthesensitizedspecimens,atwhichsitesacrackinitiationwouldtakeplacefollowedbyacrackpropagation.Thedif-ferenceinthecrackinitiationsitewouldbetheprimarycauseforthechangeinfracturemodebetweenthesensitizedandthesolutionannealedspecimens.Inthenextsection,thedifferenceintheslopesandthechangeinfracturemodewillbedescribedinmoredetailthroughaqualitativeSCCmechanism.
4.3.QualitativeIGSCCmechanismandexplanationoftheresultsobtained
4.3.1.AproposalofIGSCCmechanism
TheIGSCCmechanismwillbedescribedinmoredetailstoexplainthepresentresultsbelow,whereinadditiontoalocalstresscausedbyappliedstress,alocalstresscausedbyaninteractionbetweenfilm,dissolutionandGBSatcracktipsispresumedtoleadtoaruptureofthefilm[1].Fromthepreviouspaper[1],withregardtoafilmrupture-formationeventduringatimeintervalofDtintheSCC
1356R.Nishimuraetal./CorrosionScience44(2002)1343–1360
process,anetlocalstressatcracktips(rtip),anetlocalelongation(In)andacor-rosioncurrentdensityatcracktips(js)areexpressedbelowrespectively.
rtip¼rappþrgbs
ð3Þ
whererappiscausedbyappliedstressandrgbsiscausedbytheinteractionbetweenthefilmandGBS.Thenarateofrtipisprovidedas,
drtip=dt¼drapp=dtþdrgbs=dtAsforIn,itispresentedas,
In¼IrþIgbs
ð5Þ
whereIristheelongationrelatedtofilmruptureandIgbsistheelongationcausedbyGBSduringfilmformationuptothenextfilmrupture.ArateofInisexpressedas,
dIn=dt¼dIr=dtþdIgbs=dtThejsisalsoprovidedas,
js¼jfþjdjs/j0ðt=t0Þ;
Àn
ð4Þ
ð6Þ
ð7Þ
jforjd/j0ðt=t0Þ
Àm
ð8Þ
wherejfisthefilmformationcurrentdensity,jdisthedissolutioncurrentdensity,tisatimeduringafilmrupture-formationevent,andj0,t0,nandmaretheconstants,butdependuponsensitizingtemperature.
Furthermore,itisconsideredthatthereareacriticalfracturestress(rF)foreachsensitizedspecimenstocausefilmruptureandathresholdstress(rth)belowwhichnoSCCtakesplace.HerethertipcouldreachrFatacertainbalancebetweenarateoffilmformation(aninhibitingeffectofthefilmonelongation)andadissolutionrate(anenhancingeffectofdissolutiononelongation).Weconsiderqualitativelytheinterrelationshipbetweenrtip,Inandjsbelow.
AslidingdisplacementbyGBS(S)isprovidedas[9],
S¼nb
ð9Þ
wherenisthenumberofdislocationonthegrainboundariesandbistheBurgersvector.FromEq.(9),arateofGBS(slidingrate)isgivenas,
dS=dt¼bdn=dt
ð10Þ
ThedS=dtinEq.(10)shouldbeassociatedwithjdwhichacceleratesdn=dtbyin-jectionofdefectsintograinboundaries[10].Therefore,thefollowingrelationwouldbespeculated,
dS=dt/dn=dt/jd=zF
ð11Þ
Theincreaseinthedegreeofsensitizationleadstotheincreaseinjd(orjs),sothatdS=dtalsoincreaseswithincreasingthedegreeofsensitization.
Ontheotherhand,itisreportedthattherateofrtip,drtip=dt,isrelatedtosanddS=dt[11],
R.Nishimuraetal./CorrosionScience44(2002)1343–13601357
drtip=dt/sdS=dtð12Þ
wheresistheappliedshearstressasr¼2sunderauni-axialcondition.FromEqs.(11)and(12),thefollowingequationisderived,
drtip=dt/sjd=zF
ð13Þ
Eq.(13)impliesthattherateofrtipisproportionaltos(orr)andjd.
Underaconstantappliedstresscondition,rappisinstantaneouslyattainedassoonasaloadisappliedandtheniskeptconstantduringthesteadycrackpropagationperiod(correspondingtothesecondaryregioninthecorrosionelongationcurve).Therefore,drapp=dtwouldbecomezerointhesteadycrackpropagationperiodandEq.(4)issimplifiedas,
drtip=dt¼drgbs=dt
ðinsteadycrackpropagationperiodÞ
ð14Þ
Consequently,therateofrtipissubjectedtoonlydrgbs=dtinthecorrosiveen-vironments.Ifatestsolutionisanon-corrosiveenvironmentsuchasdistilledwater,drtip=dtisexpressedas,
drtip=dt¼drgbs=dt¼0
ðinnon-corrosiveenvironmentÞ
ð15Þ
Becausejsiszeroornegligiblysmallandasaresultdrgbs=dtbecomeszero.
ItisevidentthatthebehaviorofrtipisassociatedwiththatofIn,sothatthefollowingrelationispresumed,
drtip=dt/dIn=dt¼dIr=dtþdIgbs=dt
ð16Þ
wheretheisscouldbeassociatedwithanaveragerateofDIn=Dt,thatis,iss/DInð¼DIrþDIgbsÞ=Dt.TheIrwouldbeinstantaneouslyattainedjustafterfilmruptureaswellasrappandthenkeepconstantduringthesteadypropagationperiod,dIr=dt¼0.Therefore,fromEqs.(13),(14)and(16),thefollowingrelationshipwouldbeestablished,
jd=zF/dIgbs=dt/drgps=dt
ðinsteadycrackpropagationÞ
ð17Þ
Hereitshouldbenotedagainthatthefilmformationatcracktipsisprerequisitetotheformationofrgbs,whilethejdisprerequisitetothedevelopmentofrgbs.4.3.2.AppliedstressandtesttemperaturedependencesofSCCsusceptibility
Inthissection,weconsidertheeffectsofrandtesttemperatureontheSCCbehaviorofeachsensitizedspecimensonthebasisoftheIGSCCmechanismde-scribedintheprevioussection.Undertheconstantenvironmentconditions,exceptr,ifthebehaviorofjs(orjd)foreachsensitizedspecimenswouldbethesamein-dependentofr,drgbs=dtcouldincreasewithincreasings(orr)fromEqs.(13)and(14).ThismeansthatthetimeforrtiptoreachrFbecomesshorterbecauseofrF¼constant.Inaddition,theincreaseinrleadstotheincreaseinrapp,whichmeansthatthecontributionofrgbstortiplessens.Therefore,itisconcludedthattheincreaseinr,leadingto(a)theincreaseindrgbs=dtand(b)theincreaseinrapp,contributestothedecreaseinDt.Inotherwords,thefrequencyofthefilm
1358R.Nishimuraetal./CorrosionScience44(2002)1343–1360
rupture-formationeventincreaseswithincreasingrtoleadtothedecreaseintfandtheincreaseiniss.
Ifrbecomeslargerthanrmax,rappwouldbecomelargerthanrFandhencethergbswouldhavelittleneededforthefractureofthespecimens,whichcorrespondstothecaseinthestress-dominatedregion.Ontheotherhand,ifrbecomeslessthanrmin,thecontributionofrapptortipwouldbecomeverysmallandhencetheincreaseinrtiptoreachrFissubjectedtoonlythatofrgbs.Inthiscase,atimeforrtiptoreachrFwouldbecomelongandjswouldbecomecomparabletoageneralcorrosioncurrentdensityonthesurface.Asaresultthefractureofthespecimenswouldtakeplacebythereductionincrosssectionalareathroughgeneralcorrosion.Thisisthecaseinthecorrosion-dominatedregion.
Undertheconstantappliedstresscondition(risconstant),butundervariableconditionsofenvironment,thatis,rapp¼constantandhencedrapp=dt¼0,sothatdrtip=dt(ordrgbs=dt)dependsupononlyjdfromEqs.(13)and(14).Asthetesttemperatureincreases,jdforeachsensitizedspecimensincreasescorrespondingly,wherejddoesnotshowthesamebehaviorasthetesttemperaturechanges,showingthatnorminEq.(8)woulddecreasewithincreasingtesttemperatureandviceversa.Consequently,Dtwoulddecreasebytheincreaseindrgbs=dtwithincreasingthetesttemperatureandviceversa,toleadtothedecreaseintfandtheincreaseiniss.Thusthetesttemperaturedependenceofissandtfcanbequalitativelyexplainedforeachsensitizedspecimens.
Furthermore,intheterminalcrackpropagationperiodaftertss,theincreaseinrtruebycrackpropagationbeginstoaffecttheelongationbehavior(therapidincreaseinelongation),whichmeansthattheincreaseinrappaffectstheelongationbehavior.Therefore,thecontributionofrapptortipincreaseswithtimeandthatofrgbsde-creases.Finally,rappitselfreachesrFtoleadtoamechanicalfractureofthespeci-mens.
4.3.3.SensitizingtemperaturedependenceofSCCsusceptibility
ThedifferenceofSCCsusceptibilitybetweenthespecimenssensitizedatdifferentsensitizingtemperaturesisdiscussedundertheconstantappliedstress(rapp¼constant)andenvironmentconditionsinthissection.Itisrecognizedthatjdincreaseswithincreasingthedegreeofsensitization,sincethedegreeofCrdepletionincreasescorrespondingly.Thisimpliesthatasthedegreeofsensitizationincreases,drgbs=dtfromEq.(17)increasewiththeincreaseinjdandthenDtdecreaseswithincreasingthedegreeofsensitization.Ontheotherhands,themagnitudeofrFisconsideredtodependuponthedegreeofsensitization,correspondingtothatofrmax.TheincreaseinrFwouldcontributetotheincreaseinDtunderthesameexperi-mentalconditions,sincerappisconstantandhencethecontributionofrgbsforrtiptoreachrFincreases.Thus,toexplaintheeffectofthedegreeofsensitizationonthebehaviorofrgbs,thebehaviorofjdandrFwiththereverseeffecteachothermustbetakenintoconsideration.However,itispresumedthattheincreaseinjdwouldbesuperiortotheincreaseinrF,toexplainthefactthatthetfbecomestheshortestattheseverestsensitizingtemperatureofaround1000K.
R.Nishimuraetal./CorrosionScience44(2002)1343–13601359
Furthermore,inthecaseofthesolutionannealedspecimenssuchastype304,type316,type310[12]andtype430(ferriticstainlesssteel)[13],wheneverthevalueofisshasalargerone,thevalueoftfbecomesalwayssmaller.ThismeansthatthevalueofissisproportionaltotheDIn=Dt.However,whenthevaluesofissandtfforthesensitizedspecimensarecomparedwiththoseforthesolutionannealedspecimensatacertainconstantappliedstress,asshowninFigs.3and4,thevalueofissbecomessmallerthanthatforthesolutionannealedspecimensatanappliedstressoflessthan400MPa,whereasthevalueoftfissmallerforthesensitizedspecimensthanforthesolutionannealedspecimens.ThismaysuggestthattheproportionalrelationshipbetweenInandI(thenetelongationinFig.2)forthesensitizedspecimensisdifferentfromthatforthesolutionannealedspecimens.Inotherwords,theelongationbe-haviorbyGBSisdifferentfromthatbydislocationmovementinthegrainsforTGSCC[5]withrespecttoitsappliedstressdependenceanditsmagnitude.Theincreaseoftheformerelongationwouldbecomesmallerthanthatofthelatterbe-causeoftheexistenceofCrcarbidesunderanidenticalappliedstresscondition.Therefore,thefollowingrelationshipwouldbepresumed,
iss/aDIn=Dt
ð18Þ
whereaisamodifiedfactoranddecreaseswithincreasingthedegreeofsensitizationintherangeof0–1.EvenifthevalueofDIn=Dtbecomesthesameforthesensitizedandthesolutionannealedspecimens,thevalueofisswoulddecreasewithincreasingthedegreeofsensitizationandviceversa.
4.3.4.Changeinfracturemode
Thefracturemodeofthesensitizedtype316specimenschangesfromintergran-ulartotransgranular,dependinguponthedegreeofsensitization.Thiswouldbeexplainedasfollows.Asthedegreeofsensitizationdecreases,thedegreeofCrde-pletionandCrcarbidesdecreasescorrespondingly.Thedislocationmovementre-strictedwithinonegrainbyCrcarbidescouldbegintotakeplaceoverseveralgrainspartlywithdecreasingthedegreeofsensitizationtocausethecompetitionbetweenGBSanddislocationmovement.WhendislocationmovementbecomessuperiortoGBS,thefractureappearancewouldbecomepredominantlytransgranular.
Inaddition,atasensitizingtemperatureofabove1100Kandbelow850K,thesensitizationaffectsslightlytheslopesinEqs.(1)and(2),andthevalueoftss=tfasshowninFigs.7,11and13,butlittleintergranularfracturemodeappears.Mulford,etal.[14]pointedoutthatsolutesegregationsuchasphosphorousandsulfuratgrainboundariestakesplaceevenforthesolutionannealedspecimensaswellasforthesensitizedspecimens.Inthesesensitizingtemperatureranges,therefore,wewillneedtoconductfurtherexperimentstoclarifytheroleinsolutesegregationonSCCbehavior.
5.Conclusions
TheSCCcharacteristicsofthesensitizedtype316specimensaresummarizedasfollows:
1360R.Nishimuraetal./CorrosionScience44(2002)1343–1360
(1)Curvesofappliedstress––threeparameters(steadystateelongationrate,iss,timetofailure,tf,andtheratioofthetimeintervalofSCC-dominatedfailure,tss,totf)curvesaredividedintothreeregions,thatis,thestress-dominated,SCC-domi-natedandcorrosion-dominatedregions,respectively.
(2)Thevalueoftss=tfissmallerthanthatofthesolutionannealedspecimenoverthewholesensitizingtemperature,butitholdsconstantindependentofappliedstressandtesttemperature.
(3)TherelationbetweenissandtfobtainedasafunctionofappliedstressbecomesagoodstraightlinewithaslopeoflessthanÀ2ofthesolutionannealedspecimens.Underaconstantappliedstresscondition,italsobecomesagoodstraightlinewithaslopeoflessthanÀ1ofthesolutionannealedspecimen.However,theslopeforthesensitizedspecimensdependsuponsensitizingtemperature.
(4)Fromtheitem(3),thesteadystateelongationrate,iss,becomestheparameterforpredictionoftimetofailure,tf.
(5)Thefracturemodebecomespredominantlyintergranularatasensitizingtemperatureofaround1000K.
(6)ThepresentresultsobtainedareexplainedintermsofGBS,Crcarbides,Crdepletion,filmformationandcorrosioncurrentdensityatcracktipsalongwiththequalitativeIGSCCmechanismalreadyproposedforthesensitizedtype304speci-mens.
References
[1][2][3][4][5]
R.Nishimura,I.Katim,Y.Maeda,Corrosion,inpress.R.Nishimura,K.Kudo,Corrosion45(19)308.R.Nishimura,Corrosion46(1990)311.R.Nishimura,Corros.Sci.34(1993)1859.
R.Nishimura,K.Yamakawa,ProceedingsofPassivityandLocalizedCorrosion,in:M.Seo,B.MacDougall,H.Takahashi,R.G.Kelly(Eds.),ElectrochemicalSocietyPV99–27,ElectrochemicalSocietyInc.,Pennington,NJ,USA,2000,pp.624–633.
V.Cihal,IntergranularCorrosionofSteelsandAlloys,MaterialsScienceMonographs,vol.18,Elsevier,Amsterdam,1984.
G.E.Dieter,MechanicalMetallurgy,seconded.,McGraw-Hill,NewYork,1976,p.195.R.Nishimura,Corrosion49(1993)796.
H.E.Evans,MechanismsofCreepFracture,Elsevier,Amsterdam,1984,p.169.B.Gu,W.-Y.Chu,L.-J.Qiao,C.-M.Hsiao,Corros.Sci.36(1994)1437.H.L.Logan,J.Res.Natl.Bur.Stand.48(1952)99.R.Nishimura,Corros.Sci.34(1993)1463.R.Nishimura,Corrosion48(1992)882.
R.A.Mulford,E.L.Hall,C.L.Briant,Corrosion39(1983)132.
[6][7][8][9][10][11][12][13][14]
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- huatuo0.cn 版权所有 湘ICP备2023017654号-2
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务