HelmutFriedrichAlbert-Einstein-Institut
Max-Planck-Institutf¨urGravitationsphysik
AmM¨uhlenberg114476GolmGermany
February7,2008
Abstract
InhyperbolicreductionsoftheEinsteinequationstheevolutionofgaugeconditionsorconstraintquantitiesiscontrolledbysubsidiarysystems.Wepointoutaclassofnon-linearitiesinthesesystemswhichmayhavethepotentialofgeneratingcatastrophicgrowthofgaugeresp.constraintviolationsinnumericalcalculations.
1Introduction
MostnumericalcalculationsofsolutionstoEinstein’sfieldequationsarebeingplaguedbyanundesirablyfastgrowthofconstraintviolations.AhugevarietyofreducedequationshasbeenderivedfromEinstein’sequationswiththehopeoffindingversionswithstablepropagationpropertiesandtherehavebeensug-gestedmodifcationsoftheequationswhichwerehopedtoforcebackthesolutiontotheconstraintmanifold(wereferto[6]forfurtherdicussionandreferences).Morerecently,therehavebeenperformedstabilityanalysesofthesubsidiarysystemswhichcontroltheevolutionofthegaugeconditionsortheconstraintquantities(cf.[1],[8]andthereferencesgiventhere).Theseledtorequirementsonthecoefficientsoftheequationswhichinthecaseof[1]resultedingeometricconditionsonthefoliationunderlyingtheevolutionbythemainsystem.Nev-ertheless,thefieldappearstobewideopen,mostofthesuggestedremediesare
1
experimental,andthecauseoftheproblemsisnotunderstood.In[1],[8]thesubsidiarysystemshavebeenconsideredaslinearsystemsongivenspace-times.Incontrast,wewishtoemphasizeinthisnotethenon-linearityofthesubsidiarysystem,whichappearstohaveapotentialofgeneratingcatastrophicconstraintviolations.Tounderstandtheextenttowhichthesenon-linearitiesmayaffectthenumericalconstructionofspace-timesandtodevelop,ifnecessary,waystoavoidtheireffects,furtherinvestigationsareneeded.
2Thehyperbolicreduction
WeshalluseafewfactsaboutthehyperbolicreductionprocedurebywhichthegeometricinitialvalueproblemforEinstein’sfieldequationsisreducedtoaCauchyproblemforahyperbolicsystem.Thereexistnowmanyversionsofit,whosegeneralunderlyingstructureare,however,moreorlessthesame.Becauseitleadstoconciseexpressions,wewillusethemetriccoeffficientsasbasicunknownsandconsidertherepresentationofthefieldequationsinwhichtheirevolutionisgovernedbyasystemofwaveequations.Toemphasizetheindependenceofourdiscussionofanyparticularcoordinatesystemweshallemploythenotionofagaugesourcefunctionintroducedin[2].Wereferto[3],[4]formoredetailsonthereductionprocedure.
Let(M,g)denoteasmooth4-dimensionalLorentzspacewithsmoothspace-likeCauchyhypersurfaceSandU∋xλof→R4.Fµ(xλ)∈VasmoothmapofanopensubsetUintoanothersubsetVWithfunctionsxµandtheir(4-dimensional)differentialsdxνprescribedonsomeopensubsetWofSonecansolvenearWtheCauchyproblemforthesemi-linearsystemofwaveequations
∇ν∇νxµ=−Fµ(xλ).
IfthedxµhavebeenchosenlinearlyindependentonWthesolutionwillprovideasmoothcoordinatesystemxλonsomeneighbourhoodofWinM.Intermsofthesecoordinatestheequationsabovetaketheform
−Γµ(xλ)=−Fµ(xλ),
wheretheΓµdenotethecontractedChristoffelsymbolsΓµ=gνηΓνµηofgµν.Thisshows(ignoringsubtletiesarisinginsituationsoflowdifferentiability)thatthecontractedChristoffelsymbolscanlocallybemadetoagreewithanypre-scribedsetoffunctionsFµandthatthesefunctionandtheinitialdatadeterminethecoordinatesuniquely.Werefertothesefunctionsasgaugesourcefunctions.Assumenowthat(M,g)istobeobtainedbysolvingaCauchyproblemforEinstein’svacuumfieldequations.WeshallderivethepropertieswhichwillhelpusformulatethisproblemasaCauchyproblemforhyperbolicequations.ThecontractedChristoffelsymbolsareofparticularinteresttousbecausetheRiccitensorofgcanbewrittenintheformRµν=−
1
HerethecontractedChristoffelsymbols(andthefunctionsFν=gνµFµconsid-eredinthefollowing)arebeingformallytreatedasiftheydefinedavectorfield(which,ofcourse,theydonot).ThusΓν=gνµΓµand∇µΓν=∂µΓν−ΓµλνΓλ.Thediscussionabovesuggestsreplacingin(2.1)thefunctionsΓνbyfreelycho-sengaugesourcefunctionsFν(sothattheresultingexpressionwilldependingeneralonthecoordinatesxλnotanylongeronlythroughthegµν).Withthisreplacementthevacuumfieldequationstaketheform
F
0=Rµν≡−
1
2
Rgµν)=∇µ∇µQν+RµνQµ,
(2.4)
andthusasystemofwaveequationsforthequantitiesQν.Werefertothissystemassubsidiarysystem.
ThedetailedanalysisshowsthatiftheCauchyproblemforthemainevolutionsystemisarrangedsothattheinitialdatasatisfytheconstraintsandthegaugeconditionQν=0onS,itfollowsforthesolutionofthemainevolutionsystemthatalsodQνandthusany‘timederivative’∂tQνtransversetoSvanishesonS.TheuniquenesspropertyofthesubsidiarysystemthereforeimpliesthatthesolutiontothemainevolutionsystemdoesindeedsatisfyQν=0onthedomainofdependenceofSwithrespecttog.ThisreducesthelocalCauchyproblemforEinstein’sfieldequationstotheproblemofsolvingequation(2.2),whichthustakesthecentralroleintheanalyticdiscussion.Ofthesubsidiarysystemonlythehomogeneityandtheresultinguniquenesspropertyareneeded.
3Thenon-linearityofthesubsidiaryequation
Themainevolutionsystemisalsocentralinnumericaldiscussions.BecausetheinitialdataQµand∂tQνontheinitialhypersurfaceScomewithanerror,theevolutionpropertiesofthesubsidiarysystemwill,however,alsobecomeimportant.
Thereisnowaytorelateanumericalsolutiontothesolutionofthecontinuumproblemonewantstoapproximate.Togetsomeideahowerrorsinfiltrateinto
3
thevarioussystems,itisusefultoconsiderananalogyaccessibletoanalyticmethods.WeassumethemainevolutionsystemtobesatisfiedbyfieldsgµνofclassC3withanerrortermEµνofclassC1sothat
Rµν=∇(µQν)+Eµν.
(3.1)
NothingwillbeassumedabouttheoriginandstructureofthiserrorandtheerrorsintheinitialdataQµand∂tQνonS.
UsingtheBianchiidentitywith(3.1)givestheanalogue
∇µ∇µQν+RµνQµ=−2∇µ(E1
µν−
2
gµνEρρ
,
itfollowsfromthesplittingabovethat
∇µ
f1
µν−
errorsundercontrol.However,byitselfthiswillbeoflimiteduse.Inserting(3.1)into(3.2)and,observingthesplitting,into(3.4),gives
∇µ∇µQν+Qλ(∇(λQν)+Eλν)=−2∇µ(Eµν−
1
(c−
Q02)withc=2b+√a2.TheintegrationgivesQ′0=a=const.ifb=0,
√ctanh22a√Q′if0=2b>−a2,Q′0=0=c+atanh2
√
a
if2b<−a2.Thesolutionsthusre-|c|tan−2+arctan
′
2
mainboundedfort≥0ifb≥0orifa≥0and−a2<2b<0,whiletheydeveloppolesatsomet∗>0ifb<0anda≤0orif2b<−a2anda>0.(Ifthecorrespondinginitialdatawouldbemodifiedoutsidetheintersectionofthehypersurface{t=0}withthebackwardlightconeofthepoint(t∗,xa),thesolutionwouldstillbecomesingularat(t∗,xa).)
WenotethatingeneralanyKillingvectorfieldKofavacuumsolutiongµνsatisfiesequation(2.4)withQµ=Kµinthecoordinatesxµ.Inthepresentcasethisgivessolutionswhichgrowlinearly.
Forusthefollowingobservationisimportant:
WithourassumptionongµνitfollowsthateachneighbourhoodoftheinitialdataQa=0and∂tQa=0containsinitialdatafor(2.4)forwhichthesolutionQa(xµ)becomeunboundedatsomefinitex0=t∗>0.
|c|
5
4Concludingremarks
Theonlypurposeofthediscussionabovewastoindicatethebehaviourofsolu-tionstothesubsidiarysystem.Weexpecttofindasimilarsingularbehaviourofthesolutionstoequation(2.4)ifthelatterisgivenwithageneralsmoothmetricgµν(extendingsufficientlyfarintothefuture).Itwouldbeinterestingtoknowwhetherthesingulardataset,i.e.thesubsetofdatawhichdeterminesingularsolutionsofequation(2.4),isopenoroflowerdimensioninthesetofalldataifthemetricgisgiven.Whilethesingulardatasetitselfwilldependonthemetricg,suchacharacterizationmaybeindependentofthechosenmetricandmayhelpavoidenteringthesingularsector.
InaconsistentdiscussionofthegrowthofQµonewouldhavetoconsiderthemainsystemandthesubsidiarysystem
Rµν=∇(µQν),
∇µ∇µQν+Qλ∇(λQν)=0,
asacoupledsystem.Themainequationcanbestudiedindependently.Thesubsidiarysystem,implicitinthemainsystem,dependsonthemetricdefinedbythelatter.IfQµtendstogrow,themainsystemwillreacttoit,whetherforthebetterortheworthisnotclear.Whetherwithchanginggµνthenon-linearityofthesubsidiarysystemcanstillimplyablowupofQµatafinitetimeneedstobeanalysed.
Forthispurposeitmightbeinterestingtostudyundersimplifyingassumptionssuchassphericalsymmetrywhetherthemodelsystem
Rµν=∇(µqν),
∇µ∇µqν+qλ∇(λqν)=0,
consideredasEinsteinequationscoupledtoasourcefieldgivenbyavectorfieldqµ,willdevelopablowupforsuitabledata.Thereductionoftheseequationsisobtainedbyaslightmodificationoftheonedescribedabove.Thesystemcanbesimplifiedfurtherbyassumingqµtobeadifferentialqµ=∇µfofsomefunctionf.Thesecondequationwillthenbeimpliediffsatisfies
∇µ∇µf+∇µf∇µf=const.,
whichisawavemapequationinthecasewheretheconstantontherighthandsidevanishes.Inanycasetheresultsmightleadtoanidentifcationofamechanismresponsibleforthegrowthofconstraintviolationsandtothedevelopmentofmethodstoavoidthem.
SomeauthorsaddtermsbuiltfromQνtothemainsystem,whichappeartoreducethegrowthoftheconstraintviolationsincertaincalculation[5],[7].Thismayberelatedtothedifferenteffectsofthenon-linearitieswhichareobtainedintheappropriatelymodifiedsubsidiarysystems.
Thereareavailablenowmanydifferenttypesofreductions.Dependingonseveralchoices,thesubsidiarysystemmaycontrolthepreservationofthegaugeorthepreservationofconstraintsoramixturethereof.Inspiteofthedifferentappearanceoftheresultingmainandsubsidiarysystemsweexpectthatsimilar
6
non-linearitiesastheonediscussedabovewilloccurinanysubsidiarysystem,though,dependingonthesystem,theymayhavedifferenteffects.
Inanumericalschemeforthesecondorderwaveequationsthesubsidiarysys-tem,whichisofthirdorderinthemetric,can,ofcourse,hardlybeidentifiedanylongerasakindofidentityandtherelationsbetweenthetwosystemsisobscured.Butifthenon-linearityofthesubsidiarysystemcanhavefornon-vanishinginitialdataQµand∂tQµdrasticeffectsinthecontinuummodel,theyarelikelytobereflectedinnumericalcalculations.
References
[1]J.Frauendiener,T.Vogel.Onthestabilityofconstraintpropagation.
http://de.arXiv.org/abs/gr-qc/0410100[2]H.Friedrich.OnthehyperbolicityofEinstein’sandothergaugefieldequa-tions.Comm.Math.Phys.100(1985)525–543.[3]H.Friedrich.HyperbolicReductionsforEinstein’sEquations.Class.Quan-tumGrav.13(1996)1451–1469.[4]H.Friedrich,A.Rendall.TheCauchyProblemfortheEinsteinEquations.
In:B.Schmidt(ed.):Einstein’sFieldEquationsandTheirPhysicalImpli-cations.Springer,LectureNotesinPhysics,Berlin2000.[5]C.Gundlach.Privatecommunication.
[6]L.Lehner,O.Reula.Statusquoandopenproblemsinthenumericalcon-structionofspace-times.In:P.T.Chru´sciel,H.Friedrich(eds.):TheEinsteinequationsandthelargescalebehaviourofgravitationalfields.Birkh¨auser,Basel,2004.[7]F.Pretorius.Privatecommunication.
[8]G.Yoneda,H.Shinkai.Diagonalizabilityofconstraintpropagationmatri-ces.Class.QuantumGrav.20(2003)L31-L36.
7
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- huatuo0.cn 版权所有 湘ICP备2023017654号-2
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务