七年级数学综合实践课课时教学设计
延庆区第七中学 武鹏飞
授课题目 学习目标 奇妙的九宫格 1.初步了解九宫格以及它的历史渊源,感受中国古代文化的博大精深,激发学生的爱国情怀; 2.探索九宫格中的数字规律,提高探究能力和团结协作能力,感受九宫格的和谐之美; 3.运用发现的规律解决简单的三阶幻方问题,体验发现之趣。 探索九宫格中的数字规律 探索九宫格中的数字规律 教 学 过 程 环节任务 阅读热身 活动探究 学习内容 九宫格的起源 九宫格起源于河图洛书,河图与洛书是中国古代流传下来的两幅神秘图案,历来被认为是河洛文化的滥觞,中华文明的源头,被誉为“宇宙魔方”。 河图上,排列成数阵的黑点和白点,蕴藏着无穷的奥秘;洛书上的图案正好对应着从1到9九个数字,并且无论是纵向、横向、斜向、三条线上的三个数字其和皆等于15,当时人们并不知道,这就是现代数学中的三阶幻方,他们把这个神秘的数字排列称为九宫图。 1、以上是洛书中的的图案,你能把它转化成包含具体数字的三阶幻方吗? 活动说明 1. 通过阅读文本,了解九宫图的起源,感受中国古代数学文化的博大精深,激发学生的爱国情怀。 2. 学生了解九宫图的数字排列特征。 通过把洛图改写成三阶幻方,训练读图理解能力,为进一步探究九宫格中的数字排列规律找4 9 2 到实物依据。 3 5 7 8 1 6 通过问题引导,学生主 动探索,同伴交流等形2、观察九宫格中的每一行、每一列、每一条式,发现九宫格中数字对角线上的三个数的和,你有什么发现?要在排列的基本规律。 成图之前计算每一行(每一列、每一条对角线上) 的三个数的和,你能做到吗? 【结论1】九宫格中的每一行、每一列、每一条 对角线上的三个数的和相等,等于9个数总和 的三分之一。 引导学生进行讨论,必教学重点 教学难点 3、观察九宫格中的中间格子里的数,它与9要时进行提示或讲解。 格数字之和又怎样的关系?你能利用下面的 图形证明你的结论吗?(设9个数的和为s) a b c d x e 推理示范,知道学生有f g h 条理地表达自己的观点。 4 ∴ a+b+c+d+x+e+f+g+h+3x=3s 4 ∴ s+3x=3s 1归纳:得出中间格子里 ∴ x=9s 的数字是确定的。 【结论2】九宫格中中间格子里的数等于9格数 1 字之和的9。 4、九宫格中最大的数字能在角上吗?说出你 的理由。 5、用数字1、2、3、4、5、6、7、8、9组成 的九宫格共有几种填法?以小组为单位进行 讨论,并且画出来。 2 9 4 4 9 2 6 7 2 2 7 6 7 5 3 3 5 7 1 5 9 9 5 1 6 1 8 8 1 6 8 3 4 4 3 8 8 1 6 6 1 8 4 3 8 8 3 4 3 5 7 7 5 3 9 5 1 1 5 9 对九宫格的填法进行有4 9 2 2 9 4 2 7 6 6 7 2 序梳理 【结论3】九宫格中最大的数不能在角上,它有 四个位置可供选择,每个位置对应两种情况 (次中间数比肩最大数),共有8种填法。 小结归纳 学以致用 趣味阅读 填写九宫格的步骤: 计算行列和 确定中间数 填写最大数 填写次中间数 依次填写A-B-C-D-E-F 同学组内交流,代表发言,教师组织归纳填写次中 A 最大数 九宫格一般流程。 间数 F 中间数 E B C D 问题:在下面的空白方格中填上1、3、5、7、比一比那组做得快,列9、11、13、15、17这九个数,使每行、每列举全,组织各组代表交流解题经验。 和每条对角线上三个数的和都相等。 在《射雕英雄传》中黄蓉曾破解九宫格,口诀:赏析文学作品中的九宫戴九履一,右三左七,二四为肩,六八为足。 格,在愉快的氛围中结束本课的学习。 1、试用通俗的语言解释黄蓉的口诀; 2、画出口诀中描绘的九宫图; 3、跟同伴说一说你这节课的收获和体会。