ContentslistsavailableatScienceDirect
InternationalJournalofMiningScienceandTechnology
journalhomepage:www.elsevier.com/locate/ijmst
Numericalassessmentofthemechanicalstabilityinvertical,directional
andhorizontalwellbores
KamranGoshtasbia,,AyubElyasia,AliNaeimipourb
ab
DepartmentofMiningEngineering,TarbiatModaresUniversity,Tehran14115143,IranSchoolofEnergyandMineralEngineering,PennsylvaniaStateUniversity,PA16802,USA
articleinfoabstract
Inthisresearchthestabilityofwellboreisevaluatedinsevendifferentstressregimesanddiverseorien-tationsusingFLAC3Dsoftware.Thenormalizedyieldedzonearea(NYZA,i.e.,theratioofsurroundingyieldedcross-sectionalareatoinitialareaofwellbore)isdeterminedfordifferentmudpressuresaswellasdiverseorientationsofwellbore.BymeansofMATLABsoftwarethebestcurveisttedtotherecordedpointsandthentheoptimizedmudpressureiscalculatedusingtheseplots.Theoptimizedorientationisselectedconsideringthesedata.FinallythemudpressureresultedfromthismethodwascomparedwiththemudpressureobtainedfromtheMogi-Coulombcriterionandthenwiththeeldsdata.TheminimumallowablemudpressureobtainedfromtheNYZAcriterionisclosetoactualdataandthevalueobtainedfromtheMogi-Coulombcriterion.Hence,theNYZAisconsideredtobeanappropriatecriterionforwell-borestabilityanalysis.
2013PublishedbyElsevierB.V.onbehalfofChinaUniversityofMining&Technology.
Articlehistory:
Received4March2013
Receivedinrevisedform21April2013Accepted22May2013
Availableonline2December2013Keywords:NYZA
Mudpressure
OptimumorientationStressregime
1.Introduction
Wellborestabilityisoneofthecrucialissuesinoilandgasindustries.Theissuesrelatedtoinstabilityofwellbores,imposesignicantunwantedcostsondrillingoperation.Furthermore,ithasadeteriorateeffectonthetimescheduleoftheproject.Hence,inmanyoilcompanieswellborestabilityanalysisisoneofthema-joractivitiesinthewellboredesignstage[1].
Themostimportantconditionforstabilityofwellboreistokeepabalancebetweentheinducedin-situstressinthewellborewallandthesurroundingrockmassstrength.Ingeneral,theinstabilityinwellboreisthereactionofthesurroundingrockmassagainsttheinducedstressesasaresultofdrillingoperation.Ifthestrengthofrockmassismorethantheinducedstresses,thewellborewouldbestable,otherwisethesurroundingrockmasswouldyieldanden-hancetheprobabilityofoverbreakinthewellbore[2].
Oftenseveralfactorsareinvolvedintheinstabilityofwellbore.Thesefactorscouldbedividedintotwocategorieswhicharecon-trollableanduncontrollable(natural).Forinstancemudpressureandwellboreorientationareamongcontrollablefactors.Therefore,bycorrectdesigningofmudpressureforeachdesiredwellboredirection,thewellboreinstabilitywillbeminimized[3].
Optimizationofmudpressureisnecessaryforreductionoftheprobabilityofoverbreakinwellboreandotherpertinentissues
andalsotominimizethemudinvasionintothesurroundingfor-mation[4].Intheaggregate,drillingundermudpressurehigherthantheporepressurewillleadstolessinstabilityproblems.Thereasonisthatthedevelopmentofyieldedareainadjacentrockmassisreducedinthiscase[5].
Themostcommonandsimplestmodelforwellborestabilityanalysisisthelinearelasticmodel.Theimportantadvantageoflin-earelasticmodelemploymentisitslimitednumberofparameterstobedened[6].However,elastoplasticconstitutivemodelgivesmorerealisticresultsformechanicalstability.Itisbecausethismodelsimulatesthebehaviorofamediumafterreachingthecrit-icalstresslevel.Inotherwords,goingoverthecriticalstresslimitinthiscasedoesnotmeanthattherockmasshascompletelyfailed,separatedorcollapsed.Incontrast,itmeansthatthemed-iumiscapableofabsorbingmorestressesandacceptingmoredeformation[7].
Inthisresearchthecriteriaforassessingthewellboreinstabil-ity,isbasedonthedevelopmentofyielded(plastic)area.Thecri-terionwhichisoftenusedforindicationofwellboreinstabilityriskisthenormalizedyieldedzonearea(NYZA),whichisdividingthecross-sectionalareaofplasticzonetotheoriginalareaofthewellbore.Fromtheexperiencegained,theinstabilityoftenoccurswhentheamountofNYZAismorethanone[5].
Finally,ascasestudiesandverication,thewellborestabilityanalysiswascarriedoutintwowellboresintwoIranianoilelds.TheNYZAanalysisisthencomparedwiththeMogi-Coulombcrite-rionresultsandwiththeactualeldsdataaccordingly[8].
Correspondingauthor.Tel.:+982182883377.
E-mailaddress:goshtasb@modares.ac.ir(K.Goshtasbi).
2095-2686/$-seefrontmatter2013PublishedbyElsevierB.V.onbehalfofChinaUniversityofMining&Technology.http://dx.doi.org/10.1016/j.ijmst.2013.11.010
938K.Goshtasbietal./InternationalJournalofMiningScienceandTechnology23(2013)937–942
2.In-situstressesandgeomechanicalparametersoftherock
mass
ThegeomechanicalparametersusedtomodeltherockmassadjacenttothewellboreareshowninTable1.Moreover,thesevenin-situstressesusedinthisresearcharegiveninTable2[8,9].3.Stabilityanalysisusingnumericalmodeling3.1.Numericalmodels
Inthisresearchstudy,theFLAC3Dnumericalcodewhichisbasedonthenitedifferencemethodisutilizedinordertoanalyzethestabilityofwellbores.Thedimensionsofthegeneratedmodelsare400cm 400cm 800cm(Fig.1).Themodeledwellboresare32cmindiameter.
ThefailurecriteriaassumedintheseanalysesisMohr-Coulombandthein-situstressregimesconsideredarehydrostatic,normalfaulting(NF),strike-slipfaulting(SS),normal-strikeslipfaulting(NF-SS),reversefaulting(RF)andreverse-strikeslipfaulting(RF-SS).Furthermore,themodeledwellboreshavegotanangleof0,15,30,45,60,75and90degreerelativetohorizontalline(i)andthedirectionof0,30,60and90degreerelativetothemaximumhorizontalstress(a).Infact,threefactorsofinclination,directionofwellboreandin-situstressregimearesimultaneouslyconsid-eredingeneratedmodels.Altogether,1050numericalmodelsaregeneratedforthisresearchstudyconsideringthevariouswellboredirectionsandconsideringunderdifferentstressregimesandmudpressures.
3.2.Plasticzonearoundwellbore
Assumingthatthewellboreisdrilledinthedirectionofaprin-cipalin-situstress,twocasesareanticipatedforthewaythattheplasticzoneisdevelopedaroundthewellboreperiphery:(a)Symmetricaldevelopmentofplasticzone
Intheconditionwherethetwootherprincipalstresses,whichareperpendiculartothewellboreaxis,areequal,theplasticzonearoundthewellboreissymmetrical.Inotherwords,inthiscasethedisplacementsandtheradiioftheplasticzoneinthedirectionofthetwoequalin-situstressesareidentical.InFig.2thiscondi-tionisshownforNFstressregimewithisotropichorizontalstresses.
(b)Asymmetricaldevelopmentofplasticzone
Inthecasewheretheprincipalin-situstresses,perpendiculartothewellboreaxis,arenotequal,theshapeofplasticzonearoundthewellboreiselliptical.InFig.3thegeneratedplasticzonearoundthewellboreperipheryisshownforstrike-slipfaultingstressregimeandwellboredirectionalongthemeanin-situprin-cipalstress.Inthissituationthedisplacementsandradiiofplastic
Table1
Rockmassgeomechanicalparameters.Parameter
QuantityTensilestrength(T,MPa)1.5
Cohesion(C,MPa)
1.3Internalfrictionangle(u,°
)30Bulkmodulus(K,GPa)11.0Shearmodulus(G,GPa)8.7Young’smodulus(E,GPa)20.6Poisson’sratio(t)
0.1
zonearemoreinthedirectionofminimumin-situstressandtheinstabilityofwellborewouldcommenceinthisdirection.Hence,atthetimeofwellborecasingoperation,specialmeasuresshouldbetakenforthisdirection.Themoredifferencebetweenthetwoin-situstressesperpendiculartothewellboreaxisexists,themorediversityisobservedbetweentheamountsofdisplacementsandradiiofplasticzoneinthesetwostressdirections.
Inallstressregimesandorientationsofwellbore,byincreasingthemudpressurethedisplacementsanddevelopmentofplasticzonearereduced.Forinstance,inFig.4theplasticzonessurround-ingtheverticalwellboreindifferentmudpressuresareshownforNFstressregime.Asitcanbeobserved,byincreasingmudpressureinthiscase,theradiusofplasticzoneisdecreased.
Theoptimummudpressure(theminimummudpressureneededforwellborestability)isthepressureinwhichtheNYZAisequaltoone.Therefore,ineachmodelthevariationofNYZAindifferentmudpressuresarecalculatedandthenthebestcurveisttedtotheresultedpointsemployingMATLABsoftware.Asare-sult,theoptimummudpressureisaccuratelydeterminedusingthecurveformula.Forexample,inFig.5thevariationofNYZAver-susoverbalancemudpressure(mudpressure-porepressure)isillustratedforaparticularorientationandstressregime.
Asmentioned,withtheincreaseinmudpressure,theNYZAre-ducesandthereforethewellboregetsmorestable.Atthebegin-ning,theNYZAdecreaseswithahighratebutgraduallylowerrateofreductionisseen.Fig.5showsthevariationofNYZAversusoverbalancepressureforawellboredrilledwitha30degreeincli-nationanddirectionof60degreerelativetomaximumhorizontalstressinSSstressregime.
Havingtheoptimumpressureineachcase,itbecomespossibletoplotthegraphswhichshowtheminimumoverbalancepressureindifferentwellboreorientationsandforaspecicstressregime(Figs.6–12).Thentheoptimumtrajectoryofwellbore,theorienta-tionwiththelowestoverbalancepressure,isdeterminedbymeansoftheseplots.InFig.8,forinstance,awellborewithinclinationof15degreeandadirectionalongtheminimumhorizontalstresshastheoptimumorientationinNFstressregime.Itshouldbenotedthattheoptimumpressureistheminimumpressuretostabilizethewellboreandtheamountslowerthanthispressuremakesinstabilityinthewellboreverylikely.
3.3.Wellborestabilityanalysisinvariedstressregimes
Inthefollowingsections,theoptimummudpressureindiffer-entorientationsofwellboreanddiversein-situstressregimesisdetermined.Inallguresshowninthisresearch,themeaningofminimumoverbalancepressureistheoptimummudpressureminustheporepressure.
3.3.1.Hydrostaticstressregime
Ingeneral,inhydrostaticstressregimetheamountofoptimummudpressuresforvariedinclinationsanddirectionsofwellborearenotsignicantlydifferent.However,themaximumoptimummudpressureisobservedinwellboreswithinclinationof45de-gree.Moreover,theoptimummudpressuresineachspecicincli-nationforwellboresdrilledinthedirectionofrHandrh,whicharebothequal,arethesame.Thisfactisalsotrueaboutthewellboreswith30and60degreedirectionsfromthehorizontalstresses.Gen-
erally,inequalinclinationsthewellboresdrilledinthe30and60degreedirectionsfromrHhavegotrelativelylessoptimummudpressurethanthewellboresinthedirectionofhorizontalstresses(Fig.6).
3.3.2.NFstressregimewithisotropichorizontalstresses
InNFstressregimewithisotropichorizontalstresses,byincreasingthewellboreinclinationthewellboregetsmorestable.
K.Goshtasbietal./InternationalJournalofMiningScienceandTechnology23(2013)937–942
Table2
Sevenin-situstressregimesusedinmodeling(MPa).Stressregime
VerticalstressrvMaximumhorizontalstressrHMinimumhorizontalstressrh939
PorepressureHydrostatic54.054.0NF
69.055.2NFwithisotropichorizontalstresses58.844.1SS41.450.5NF-SS44.4.6RF49.160.7SS-RF
49.1
60.7
800cm400cm
mc004
Fig.1.Generalschemeofgeneratedmodels.
None
Shear-nshear-p
Shear-nshear-ptension-pShear-p
Shear-ptension-p
Fig.2.PlasticzonearoundtheverticalwellboreinNFstressregimewithisotropichorizontalstresses.
None
Shear-nshear-p
Shear-nshear-ptension-pShear-p
Shear-ptension-p
Fig.3.PlasticzonearoundtheverticalwellboreinSSstressregime.
Generally,inthisstressregimeandinsimilarwellboreinclinations,theresultedamountsofoptimummudpressuresarenotvariedfordifferentwellboredirections.IneachinclinationtheoptimummudpressureisidenticalforwellboreswithdirectionofrHandrh.Thisfactisalsotrueaboutthewellboreswith30and60degreedirec-tionsfromthehorizontalstresses.Forinclinationsapproximatelylessthan45degree,thewellboreswithdirectionsof30and60de-greefromrHhavelessoptimummudpressurecomparedtowellb-oreswiththesamedirectionsashorizontalstresses.Theoptimummudpressureisthesameforalldirectionsofwellboreswith
54.024.848.331.744.126.536.018.636.323.754.024.849.6
24.8
inclinationmorethan45degree.Inthisstressregimetheleastoptimummudpressureisforverticalwellboreandthehighest
optimummudpressureisforhorizontalwellboresalongthehori-zontalstresses(Fig.7).
3.3.3.NFstressregime
Byincreaseofwellboredeviationfrommaximumhorizontal
stressinNFstressregime,theoptimummudpressuredecreases.Hence,inthesameinclinationsofwellbore,thedirectionofmini-mumhorizontalstressisthemoststableandthedirectionofmax-imumhorizontalstressisthemostunstabledirection.Indirectionsotherthanthedirectionofrh,byincreaseofangleofwellboreinclination,thewellboregetsmorestableandtheoptimummudpressurereduces.Therefore,themaximumoptimummudpressureisneededforthewellboredrilledhorizontallyalongrH(Fig.8).Whenthewellboreisindirectionofrh,atthebeginningtheoptimummudpressuredecreasesbyincreaseofwellboreinclina-tionbutthenstartstoincreaseandthusthehorizontaldrillingis
nottheoptimumdrillingtrajectoryinthisstresscondition.Inthiscase,theleastoptimummudpressureisrelatedtoawellborewithaninclinationof15degreeandparallelto
rh
(Fig.8).
3.3.4.SSstressregime
ConsideringSSstressregime,byincreasingthewellboreincli-nationitgetsmoreunstableandthusmoremudpressureisneeded.Insimilarinclinations,thewellboredrilledparalleltorHdirectionhastheminimumoptimummudpressure.Deviationofwellborefromthisdirectionleadstolessstabilityandmorere-quiredmudpressure.Inthisstressregime,theleastoptimummudpressureisneededforthehorizontalwellborealongrH.Hence,thisisthemostfavorabletrajectoryforwellboredrilling(Fig.9).
Forwellboresdrilledalong
rh,the
mudpressurevariationrate
islessthanotherdirections(Fig.9).
3.3.5.NF-SSstressregime
Inthisstresscondition,theverticalandmaximumhorizontalstressesareequal.ThedifferencebetweenthisstressregimeandNFregimeisthatinthiscase,themeanprinciplestressisequaltothemaximumprinciplestress.Ingeneral,inalldirections,thehorizontalwellboresarethemoststable(Fig.10).WellboresdrilledinthedirectionofrhshowthehigheststabilityandtheothersboredalongrHaretheleaststable.Hence,byconsideringequaldirections,wellboresalongrhdirectionrequiretheminimumopti-mummudpressure.Optimummudpressuresinwellboresparalleltorhandalsodeviated30degreefromthisdirection,showmoresensitivetothevariationofwellboreinclination.Incontrast,lessimpactionisobservedaboutwellboresdeviating60and90degreefromtheminimumprinciplestress.Inthisstresscondition,theoptimumtrajectoryisalongrhinhorizontalplane(Fig.10).3.3.6.RFstressregime
InRFstressregime,byincreaseofwellboreinclination,moremudpressureisneededforwellboresindirectionsotherthanrh.
940K.Goshtasbietal./InternationalJournalofMiningScienceandTechnology23(2013)937–942
(a)Overbalancepressure=0(b)Overbalancepressure=2MPa(c)Overbalancepressure=4MPa
None
Shear-nshear-pShear-p
(d)Overbalancepressure=6MPa
(e)Overbalancepressure=8MPa
Fig.4.PlasticzonesurroundingaverticalwellboreinvarietyofmudpressureinNFstressregime.
54A3ZYN210
1
34678Overbalancepressure(MPa)
10
)
a8.97PM
(8.28eru7.59sser6.90pecn6.21ala
b5.52rev
O4.83
α=0°α=30°α=60°α=90°
015
30456075
Boreholeinclination(°)
90
Fig.5.VariationofNYZAforawellborewiththeinclinationof30degreeand
directionof60degreetothemaximumhorizontalstressversusthemudpressureinSSstressregime.
Fig.8.MinimumoverbalancepressureasafunctionofboreholetrajectoryinNFstressregime.
)
a4.97PM
(4.93eru
s4.90serpe4.86cnalab4.83rev
O4.79
0
15
α=0°α=30°α=60°α=90°
30456075Boreholeinclination(°)
90
)a5.52
PM(5.17eru4.83sser4.48pecn4.14ala
b3.79rev
O3.45
α=0°α=30°α=60°α=90°
0
15
30
45
60
75
90
Fig.6.Minimumoverbalancepressureasafunctionofboreholetrajectoryin
hydrostaticstressregime.
Boreholeinclination(°)
Fig.9.MinimumoverbalancepressureasafunctionofboreholetrajectoryinSS
stressregime.
4.90)a
P4.76M
(4.62eru4.48sser
p4.34e
c4.21nala4.07bre
v3.93O
3.79
α=0°α=30°α=60°α=90°
015
30456075Boreholeinclination(°)
90
)
a3.45PM(er3.10usser
p2.76ecnal2.41abrev
O2.07
0
α=0°α=30°α=60°α=90°
15
30456075
Boreholeinclination(°)
90
Fig.7.MinimumoverbalancepressureasafunctionofboreholetrajectoryinNF
stressregimewithisotropichorizontalstress.
Fig.10.MinimumoverbalancepressureasafunctionofboreholetrajectoryinNF-SSstressregime.
K.Goshtasbietal./InternationalJournalofMiningScienceandTechnology23(2013)937–942941
)a5.86
PM(5.52erusse5.17rp
e4.83cnala4.48brev
O4.14
Table4ComparisonofactualdrillingandcalculatedmudpressuresfromNYZAandtheMogi-Coulombcriteriaforwells32and54(MPa).Well
Actual25.0
6.8
Mogi-Coulomb22.97.0
NYZA21.36.5
α=0°α=30°α=60°α=90°
0
15
30
45
60
75
90
32
54
AccordingtoFigs.6–12,theoptimumdrillingtrajectory(thestableorientationofwellborewiththeleastoptimummudpres-sure)withregardtothestressregimes,asmentionedinTable2,issummarizedinTable3.4.Casestudiesandverication
Boreholeinclination(°)
Fig.11.MinimumoverbalancepressureasafunctionofboreholetrajectoryinRF
stressregime.
)5.52aPM(5.17eruss4.83erpec4.48nala4.14brev
O3.79
Ascasestudies,thewellborestabilityanalysiswascarriedoutintwowellbores(well54fromeld1andwell32fromeld2).Thedominantrocksinbothwellboresconsistoflimestonehaving
α=0°α=30°α=60°α=90°
0
15
30456075Boreholeinclination(°)
90
differentproperties.Theconcerneddepthswherethecollapseis
probableinwellbores32and54are28and3485m,respec-tively.Moreover,intheabovementioneddepthstheporepres-suresare11and30MPa,respectively,forwellbores32and54.
Rockmasspropertiesandin-situstressesinelds1and2arepresentedinTable3.
Theactualdrillingmudpressureandthecalculatedmudpres-suresusingtheMogi-CoulombandNYZAcriteriaarepresentedinTable4.TheresultsshowthatthemudpressurecalculatedfromNYZAmethodisveryclosetotheactualdrillingandtheMogi-Cou-lombmudpressures.ItisknownthattheMogi-Coulombcanaccu-ratelyestimatethefailureofvariedrockmasses[10].Hence,itcanbeconcludedthattheNYZAcriterioncanprovideagoodestimateofmudpressureneededforwellboredrilling.5.Conclusions
Accordingtotheobtainedresults,itcanbeconcludedthat:TheNYZAcriterioncanprovideagoodestimateofmudpres-sureneededforwellboredrilling.
Incaseswherethewellboreisdrilledinthedirectionofaprin-ciplestress,ifthetwootherprinciplestressesareequal,thentheplasticzoneanddistributionofdisplacementaresymmetricalaroundthewellbore.Otherwise,theamountofdisplacementsandinstabilitiesaremoresignicantinthedirectionofthemini-mumprincipalstress.
Inidenticalhorizontalstressessituation,thevariationofwell-boredirectiondoesnotaffectthewellborestabilityconsiderably.
InNFstressregimewithisotropichorizontalstresses,theleastcollapseprobabilityisfortheverticalwellbore.However,incon-ventionalconditions,thehorizontalstressesareanisotropicandhencetheoptimumwellboretrajectoryisalongrhwith15degreeinclination.
InNFstressregimewithisotropichorizontalstressesinallwell-boredirections,inNFstressregime(withanisotropichorizontalstresses)inwellboredirectionsof0,30and60degreefromrHandinRFstressregimeinwellboresalongboreinclinationtheinstabilitydecreases.
Fig.12.MinimumoverbalancepressureasafunctionofboreholetrajectoryinSS-RFstressregime.
Forwellboresinthedirectionofrh,theincreaseofwellboreincli-nationleadstolessoptimummudpressure.Therefore,inthisstressconditionwithanisotropichorizontalstresses,theoptimumdrillinginclinationchangesbetweenhorizontalandverticalandiscontingentonthedirectionofthewellbore.Indirectionparallelto
rh,verticalneartorH,
wellboreisthemoststableconditionandfordirectionshorizontaldirectionistheoptimumtrajectory.Consid-
eringthesameinclinations,thewellboredinrHdirectionhastheleastmudpressure.Bydeviatingfromthisdirection,thestabilityofwellboredecreasesandthusmoremudpressureisneeded.Inthisstressregime,theminimummudpressureisrequiredforhorizon-talwellboredalong(Fig.11).
r
H
andthereforeitistheoptimumtrajectory
Theleastvariationofoptimummudpressureversuswellboreinclinationisforthewellboresinthedirectionofrh(Fig.11).
3.3.7.SS-RFstressregime
Inwellboresdrilledindirectionof0,30and60degreefromrH,theincreaseofwellboreinclination,increasestheneededmudpressure.However,inthecaseofthewellboredinthedirectionofrh,byincreaseofinclination,theoptimummudpressurede-creasesatthebeginningandthenincreasesagain.Italsoshouldbehighlightedthatthevariationofmudpressureisnotsignicantinthiscase(Fig.12).
Forthesameinclinations,drillinginthedirectionofrHisthemostfavorablecondition.Gradually,thedeviationofwellboredirectionfromthispositionmakesthewellboreunstable.Inthisstresscondition,theoptimumtrajectoryisforahorizontalwell-borewithadirectionalong
rh,by
increaseofwell-
InNFandNF-SSstressregimes,thewellboredrilledinthedirectionofrhandinSS,RFandSS-RFstressregimes,thewellboredinthedirectionof
rH(Fig.
12).
r
H,havethemoststablecondition.
Table3Rockmasspropertiesandin-situstressesinwells32and54.Well3254
rc(MPa)
1816
t
0.330.25
E(GPa)10.58.5
C(MPa)3.74.0
u(°)
41.535.0
rv(MPa)
7284
rH(MPa)
4882
rh(MPa)
4378
942K.Goshtasbietal./InternationalJournalofMiningScienceandTechnology23(2013)937–942
InSS,RFandSS-RFstressregimes,variationofwellboredirec-tionintheplaneperpendiculartothemaximumin-situstress
(i.e.,r2,r3),hasatrivialimpactonthewellborestability.
ThemoststablewellboretrajectoryinNFstressregimeisobli-queandhasa15degreeinclination.However,inNFstressregimewithisotropichorizontalstresses,theoptimumorientationisver-ticalandinotherstressregimesexcepthydrostatic,thisinclinationishorizontal.Inhydrostaticstressregime,thevariationofinclina-tiondoesnotaffectthestabilityconsiderably.
TheincreaseofrH/rhcausesthewellboreoptimumorientationtoapproachrHdirection.Incaseofdrillingthewellboreinrhdirection,theoptimuminclinationchangesgraduallyfromverticaltohorizontalbydecreasingthemeanprinciplestresstowardtheminimumprinciplestress.However,inothercases,wellborewithdirectionsotherthanrh,byincreaseofstressfromthemeanprin-ciplestresstowardthemaximumprinciplestress,theoptimumwellboreinclinationchangesgraduallyfromverticaltohorizontal.Ingeneral,inallin-situstressregimes,theorientationexactlyornearlyparalleltothemaximumin-situstress,isthefavorabletrajectory.
Byincreasingofinclination,theimpactofdirectionislessenedandthedifferencebetweenminimumandmaximumoptimummudpressureinvarieddirectionsisdecreased.Inotherwords,allcurvesineachstressregimeconvergetojustoneparticularpressureinverticalcondition.
References
[1]DetournayC,ChenX.Factorsgoverningmudltrationandimpactonwellbore
stability.ARMA/USRMS2005;5:834.
[2]GarrouchAA,EbrahimAS.Assessmentofthestabilityofinclinedwells.
PresentationattheSPEWesternRegionalMeetingheldinBakerseld,California,26–30March2001,Bakerseld,California.
[3]PasicB,Gaurina-medmurecN,MatanovicD.Wellboreinstability:causesand
consequences.Rudarsko-geolosko-naftniZbornik2007;19:87–98.
[4]MohiuddinMA,KhanK,AbdulraheemA,Al-MajedA,AwalMA.Analysisof
wellboreinstabilityinvertical,directional,andhorizontalwellsusingelddata.JPetrolSciEng2007;55:83–92.
[5]SalehiS,HarelandG,NygaardR.Numericalsimulationsofwellborestabilityin
under-balanced-drillingwells.JPetrolSciEng2010;72(3–4):229–35.
[6]SolimanMY,BoonenP.Rockmechanicsandstimulationaspectsofhorizontal
wells.JPetrolSciEng2000;25:187–204.
[7]HawkesCD,SmithSP,McLellanPJ.Coupledmodelingofboreholeinstability
370andmultiphaseowforunderbalanceddrilling.PresentationattheIADC/SPEDrillingConference,26-28February2002,Dallas,Texas.
[8]Al-AjmiAM.Wellborestabilityanalysisbasedonanewtrue-triaxialfailure
criterion.Muscat:SultanQaboosUniversity;2006.
[9]ZhangJ,BaiM,RoegiersJC.Ondrillingdirectionsforoptimizinghorizontalwell
stabilityusingadual-porosityporoelasticapproach.JPetrolSciEng2006;53:61–76.
[10]Al-AjmiAM,ZimmermanRW.Relationshipbetweentheparametersofthe
MogiandCoulombfailurecriterion.IntJRockMechMinSci2005;42(3):431–9.
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- huatuo0.cn 版权所有 湘ICP备2023017654号-2
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务