您的当前位置:首页正文

GRANATWATCH catalogue of cosmic gamma-ray bursts December 1989 to September

来源:华佗小知识
A&Amanuscriptno.

(willbeinsertedbyhandlater)

arXiv:astro-ph/9708156v1 18 Aug 19971.Introduction

FromDecember1989toSeptember1994theastrophysi-calobservatoryGRANATperformedpointedobservationsofdifferentcelestialregions.Duringthatperiod,theX-rayinstrumentWATCH,apartofthescientificpayloadoftheobservatory,wasmonitoringthewholeofthesky.

2S.Y.Sazonovetal.:GRANAT/WATCHcatalogueofgamma-raybursts

Fig.1.Detectorefficiencyasafunctionofsourceoff-axisangle

(sameforbothWATCHenergybands)

theverybeginningoftheexperimentoneofthemoni-torswentoutoforder,∼80%oftheskycanbesimul-taneouslyviewedundermostfavourableconditions.TheperformanceoftheWATCHinstrumentisbasedontherotationmodulationcollimatorprinciple.Apointsource,provideditisbrightenoughforatleastonerotationofthemodulationcollimator(∼1s),canbelocalizedwithanaccuracyof∼50/n10arcmin(atthe3σconfidencelevel),wheren10isthesourcesignalinunitsof10standarddevi-ations(Brandt1994).Thedetectorcountrateisrecordedintwoenergybands,theboundariesofwhichwereresetseveraltimesduringthemissionandroughlycorrespondto8–20keVand20–60keV.

3.Registrationofcosmicgamma-rayburstsWATCHpossessesanon-boardalgorithmoftriggeringonburstevents.Aburstisdetectedifanincreaseinthecountrateofmorethan6standarddeviationsabovetheback-groundlevelhasbeenregisteredatoneof12samplingtimesevenlycoveringonthelogarithmicscalearangefrom16msto32s.Ifaneventisdetectedonatimescaleshorterthan2s,itstimehistorywillberecordedwitharesolutionof1s,whereasforslowerburststhestan-dardintegrationtimeofeither7sor14swillbeused.Thepurposeofthegrounddataanalysisisthentosepa-rateeventsofcosmicanddifferentnature.Theselatterin-cludesolarflareswhichdifferfromGRBsintheirgenerallysofterspectra.ItisalsousuallypossibletoestablishwithWATCHthattheirincidentdirectioniscoincidentwiththedirectiontothesolardisc.Inmanycasesbursteventsweregeneratedbyacceleratedchargedparticles.ThetimehistoriesofsucheventsaredifferentfromthoseofGRBs.Althoughmostnon-cosmiceventscanbereliablyidenti-fiedbytheircharacteristicfeatures,theoriginofanumber

ofburstsremainsunsettled.Inthiscatalogue,onlythoseeventsarepresentedthateitherhavebeenlocalizedwithWATCHoraredesignatedascosmicinthecataloguesofotherGRBexperiments.Thesignificanceofthedetectionof∼25%oftheburstsincludedinthecataloguewasnothighenough(6σ)togenerateatriggeronboard.Theseevents,discoveredalreadyinthecourseofthegroundanal-ysisasasignificant(>4σ)increaseinthecountrate,arecoincidentintimewithGRBsobservedbyotherexperi-ments,mainlybytheBATSEinstrumentontheComptonGamma-RayObservatory(Meeganetal.1996).

4.Thecatalogue

Atotalof95GRBshavebeenincludedinthecatalogue.TheinformationontheseeventsispresentedinTable1.Inthefirstcolumnofthetablethenamesoftheburstsaregiven,whichwereformedusingacommonterminol-ogy:thefirstletter’W’indicatestheinstrument’sname,WATCH,thenfollowstheyear,monthanddayofthede-tectionoftheevent.Theburstmayhavealetter(’b’or’c’)appendedtoitsname,ifitisthesecondorthirdburstdetectedinaday.Thesecondcolumnyieldsthetime(UT)ofthetrigger.Inthesubsequentcolumnsthebasiccharac-teristicsoftheburstsaregiven.AsameasureoftheburstdurationweusethequantityT90whichisthelengthoftheintervalduringwhich90%(from5%to95%)ofthetotalcountsfromaburstwasaccumulated.Thefluenceandthepeakenergyfluxoftheburstswerecalculatedinthetwoenergybands:8–20keVand20–60keV(spectralshapesimilartothatoftheCrabNebulawasassumed).Whencalculatingthesequantitieswemadeacorrectionfortheaspectoftheburstsource,whichisknownforthemajorityofthepresentedeventsfromlocalizationswitheitherWATCHorCGRO/BATSE(Meeganetal.1996).However,for18burstssuchinformationisnotavailable,henceweacceptedforthemasanestimateofthedetectorgeometricalefficiency(seeFig.1)itsexpectationvalueof0.7.Thequotederrorsforthefluxesarepurelystatisticalones,theuncertaintiesduetounknownspectralshapesandsourceaspectshavenotbeenconsidered.Thepeakfluxwascalculatedusingthecountratedatawiththebesttimeresolutionavailableforagivenevent.Also,giveninthetableistheratioofthefluencesinthe20–60keVand8–20keVenergybands,whichcharacterizesthehard-nessoftheburstspectrum.Finally,thelastcolumnofthetablecontainsinformationondetectionsoftheburstsbyotherexperimentsthatwereinorbitduringthepe-riodexamined:KONUS/GRANAT,PHEBUS/GRANAT,SIGMA/GRANAT,GINGA,BATSE/CGRO,COMP-TEL/CGRO,OSSE/CGRO,DMS,MarsObserver,PVO,ULYSSES,WATCH/EURECAandYOHKOH(Golenetskiietal.1991;Terekhovetal.1994;Terekhovetal.1995;Sunyaevetal.1993;Ogasakaetal.1991;Meeganetal.1996;

S.Y.Sazonovetal.:GRANAT/WATCHcatalogueofgamma-raybursts3

Hanlonetal.1994;Hurleyetal.1994;

Brandtetal.1994).4.1.Bursttimehistories

InFig.2thetimehistoriesofthedetectorcountratedur-ingtheburstsinthetwoWATCHenergybandsareshown.Forthelongerbursts,thebesttimeresolutionavailableiseither7sor14s.Fortheshorterevents,timehistoriesof1sresolutionarepresented.Finally,forthetwoshortesteventsW900404andW930106,whichlastedlessthan1s,lightcurvesobtainedbyintegratingthecountrateover20msintervalsarepresented.Wenotethatthesetwotimehistoriesarenecessarilydistortedtosomedegreebythemodulationeffectcausedbytherotationofthecollimator.Thebackgroundwasinmostcasesestimatedbyaverag-ingthecountrateovertimeintervalsimmediatelybeforeandaftertheburst.Whenthebackgroundwasstronglyvariableduringtheburst,weusedapproximationofthecountratebypolynomialsoffirstorhigherorders.4.2.Burstdurations

Figure3showstheduration(T90)distributionfortheburstsdetected.Itwasobtainedusingthose89outof95eventswhosedurationscouldbedeterminedreliably.Atleast5ofthe6eventsexcludedfromtheanalysisareapparentlyshort(shorterthanafewseconds),buttheyweretooweaktoforcetheon-boardburstlogictotrigger.Hencenocountratedatawithagoodtimeres-olutionneededfordeterminingtheirdurationsisavail-able.Themeanburstdurationis66s,andthemaximumofthedistributionliesintheinterval10to100s.Oursamplecontains2eventsshorterthan2sand7eventslongerthan200s.Inotherexperiments,twoclassesofburstswereidentified:ofdurationshorterandlongerthan∼energy2s(Kouveliotouspectraoftheetshorteral.1993).burstsItwasoftypenoticed1werethatgen-theerallyharderthanthoseofthelongerburstsoftype2(Kouveliotouetal.1993;Lestradeetal.1993).Theneg-ligiblysmallnumberoftype1eventsinourcataloguecomparedtothepreviousresults(Meeganetal.1996;Terekhovetal.1995)canbeaccountedforbyatleasttwoselectionaleffects:1)allburstswithdetectionsignificancelessthan6σincludedinourdurationsamplearelongerthan7s,becausethisvalueisthetimeresolutionofthedata,2)WATCHissensitivetoX-rayphotonswithener-giessignificantlybelowtheeffectiveenergyofthephotonsemittedintype1bursts.

4.3.Burstspectralhardnessandevolution

ThespectralinformationontheemissionproducedduringGRBsprovidedbyWATCHislimitedtothecountratesinthetwoenergyranges8–20keVand20–60keV.Hencetodescribethespectraoftheobservedburstswecalculatedtheratiosoftheburstenergyfluxesinthehigherand

Fig.3.Histogramofdurations(T90)fortheWATCHbursts

lowerbands.Asfollowsfromthecross-correlationdiagrampresentedinFig.4,thereisnocleardependenceofburstoverallhardnessratio(the20–60keVfluencedividedbythe8-20keVfluence)onburstduration.ThisgraphgivesfurthersupporttotheabovestatementthatmostoftheburstsintheWATCHcatalogueareofthesametype.

Fig.4.Bursthardnessratios(fluenceoverthe20–60keVbanddividedbythatoverthe8–20keVband)vs.burstdurations

TheWATCHobservationsillustratethattheenergyspectraareusuallynotconstantbutevolvethroughoutbursts,thetypicalsituationbeingthatthespectradur-

4S.Y.Sazonovetal.:GRANAT/WATCHcatalogueofgamma-raybursts

ingtheburstriseanddecayphasesaresofterthanthatatthepeakoftheevent.ThisisdemonstratedbyFig.5,whereburstpeakhardnessratio,i.e.theratioofthepeakenergyfluxesin20–60keVand8–20keV(insomeburststhetwofluxmaximaarenotcoincidentintime),isshownasafunctionofburstoverallhardnessratio.Itcanbeseenthattheformerislargerthanthelatterforthemajorityofevents,reflectingthefactthatburstsgenerallyhave“sharper”profilesintheharderenergyband.In13bursts(Table2)thisspectralevolutionrevealsitselfespeciallydistinctlyasasignificantactivityobservedonlyat8–20keVeitherprecedingorfollowingthehardX-rayevent(seethecorrespondingtimehistoriesinFig.2,fordiscus-siononpartoftheseeventswithoccurencesbeforeOcto-ber1992seealsoCastro-Tirado(1994)andCastro-Tiradoetal.(1994)).SimilarX-rayprecursorandtailactivitieshavebeenobservedbeforeinanumberofburstsbyafewspace-flownGRBinstrumentssensitivetomediumorsoftXrays(Murakamietal.1991).IntheobservationscarriedoutwiththeGRBdetectoronboardtheGINGAsatellite,whichhadalow-energycut-offataslowas1.5keV,suchX-ray-activeeventsaccountedtoaboutonethirdofthetotalburstsdetected(Murakamietal.1992).ThephotonspectrameasuredwithGINGAat1to10keVduringboththeburstX-rayprecursorandtailcouldbeapproximatedbyablack-bodymodelwithtemperaturesbetween1and2keV,indicatingthattheemissionmechanismattheseburstphasesmaybethermalatvariancewiththeappar-entlynon-thermalemissionduringthemaingamma-rayevent.

Fig.5.Burstpeakhardnessratiosvs.burstoverallhardnessratios.Thedashedlineindicatesthecaseofequalityofthesetwoquantities

Table2.Gamma-rayburstswithprecursorortailX-rayac-tivity

W900222precursorandtailW900708precursorandtailW900901tailW910817tail

W911209precursorW920718precursorW920723btailW920903tail

W920903bprecursorW920925precursorW921013btailW921022tailW930705tail

S.Y.Sazonovetal.:GRANAT/WATCHcatalogueofgamma-raybursts5

4.5.Bursterlocationsinthesky

ThelocationofthesourceofaburstcanbefoundfromtheWATCHdataifthefollowingthreerequirementsaremet:1)theburstisstrongenough,2)itlastslongerthan∼1rotationofthemodulationcollimator,and3)themodu-lationpatternusedforlocalizationisnotsignificantlydis-tortedbythepresenceinthelightcurveofbrightdetailsontimescalesshorterthantherotationperiodofthecol-limator.Thepresenceofotherbrightsourcesinthefieldofviewcanpossiblymaketheprocedureofderivingthesourcepositionunreliableevenwhentheaboveconditionsaresatisfied.Thereforeweconsideredasourcelocalizedonlyifthesamepositionwasresultedfromtwostatis-ticallyindependentmodulationpatterns.Thesepatternsmaybelongtodifferenttimeintervals,differentenergyranges,or,inrarecases,differentphaseintervalsofthesamemodulationpattern.Forseveralweakburstsanaddi-tionalindependentverificationwasobtainedthroughcom-paringthepositionsprovidedbyWATCHandBATSE.

Wehavesucceededinlocalizingthesourcesof47bursts(Table3).Thestatisticaluncertaintyofpositiondeterminationisinverselyproportionaltothesignificanceofsourcedetectionandvariesbetween7arcminand1.5degforthelocalizedbursts(theradiusofacirclewithanareaequaltotheareaofthe3σconfidenceregion),thelocalizationregionbeinganellipsesomewhatcontractedalongthesourceoff-axisangleθ.Inpreparationofthiscat-aloguespecialeffortsweremadetodecreasetheinfluenceofvarioussystematiceffectsonburstlocalizations.Signif-icantprogressinthisdirectionhasnowbeenachieved,inthefirstinstanceduetotheuseofinformationprovidedbythestartrackeroftheSIGMAtelescopefordeterminationoftheattitudeofthespacecraftatthetimesofbursts.Be-sides,onthebasisofanamplearchiveofWATCHdataonlocalizationsofbrightpersistentX-raysources,wehavefoundmoreaccuratevaluesforsomeoftheparametersrelevanttotheinstrument,includingthemountinganglesdefiningtheorientationoftheWATCHdetectorswithre-specttotheSIGMAstartracker.Unfortunately,thestartrackerwasattimesoffduringWATCHobservations,andfor16burstswethuswereboundtouseotherinformationresourcestocalculatetheattitude,namelyreadingsofthenavigationalinstrumentsofthespacecraftandtheknowl-edgeofthecelestialpositionsofbrightX-raysourcesthatarealwayspresentinthefieldofviewandcanbelocal-izedwiththeWATCHdetectors.Thisleavesanirremov-ableuncertainty∼0.5◦resultedfromtherapid(∼30minperiod)andvirtuallyunpredictablewobblingofthespace-craftattitude.Forthe31positionsthatwerecalculatedusingprecisenavigationalinformationweconservativelyestimatetheremainingsystematicerrorat0.2◦.Thisun-certaintyismainlyduetothenotcompleteaccountingforvariousphysicalphenomenaintheinstrumentmathemat-icalmodelcurrentlyused,inparticularthedependenceoftheinstrument’spositionalresponseontheenergyspec-

trumoftheincidentradiation.Thecumulativelocaliza-tionuncertaintiesgiveninthelastcolumnofTable3werecalculatedbysumming(inquadrature)thestatistical(3σ)andestimatesystematicerrors.Althoughwehavealreadyarrivedatthestatethatformostofthelocalizedburstsourcesitisthestatisticalerrorthatmostlycontributestothelocationuncertainty,acooperativeeffortbetweenIKIandDSRIisnowinprogresstofurtherimprovethemodellingoftheinstrument,whichweexpectwilleventu-allyenablefurtherreducingofthelocalizationregionsofseveralstrongerbursts.

Whenanalyzingacelestialdistributionofsources,itisnecessarytoknowhowlongdifferentregionsoftheskyhavebeenmonitored.WehavecompiledfromtheWATCHdataanexposuremap,whichisshowninGalacticcoor-dinatesinFig.6.Calculatingthismap,incaseswhenaskyregionhadbeenobservedsimultaneouslybytwoorthreeWATCHdetectors,thecorrespondingtimeintervalwasappendedonlyonce.Weconsideredanareaoftheskybeinginsightoftheinstrumentifitwasnotmorethan65◦offaxis.Themaximumoftheexposuremapof510daysislocatedinthevicinityoftheGalacticcenter(l=−7◦,b=3◦),anditsminimumof218dayshasco-ordinatesl=87◦,b=29◦.Theexposuretimeaverages372daysoverthecelestialsphere,whichcorrespondstoanall-skymonitoringefficiencyof21%.

InFig.7,acelestialmapofthepositionsoftheburstsourcesinGalacticcoordinatesispresented.Inordertochecktheangulardistributionoftheburstsforpossiblelarge-scaleanisotropies,wehavecalculateditsdipoleandquadrupolemomentsrelativetotheGalacticcenterandtheGalacticplane,respectively.Uponcorrectionforex-posuretime(termsaresummedwithweightsinverselyproportionaltothepositionexposure)thedipolemo-ment=0.10±0.08(θisthesourceangulardistancefromtheGalacticcenter),thequadrupolemo-ment=−0.01±0.04(bisthesourcegalacticlatitude).Thereforeourobservationsareconsis-tentwithanisotropicdistributionoftheburstsourcesonthesky,inagreementwiththecorrespondingBATSEresult(Meeganetal.1996).Wecarriedoutsimilarcal-culationsforsamplesofburstsselectedoutbyvariousattributes.Wehavenotfoundanysignificantdeviationsfromisotropy,inparticular,thedistributionofthesourcesofthestrongerburstsisapparentlyisotropic.Notethatthedipoleandquadrupolemomentscalculatedusingthe32eventsofthefirstWATCHcatalogueofGRBsare:=0.22±0.10,=−0.04±0.05,respectively(Castro-Tiradoetal.1994).Thus,theten-dencyforbursterstoconcentratetowardstheGalacticcenter,evidentatasignificanceof2σinthefirstcata-logue,isnotconfirmedbythenewdataobtainedsinceOctober1992.

6S.Y.Sazonovetal.:GRANAT/WATCHcatalogueofgamma-raybursts

Table3.GRANAT/WATCHlocalizationsofgamma-raybursts

W900118W900123bW900126W900222W900708W900708bW900901W900925W900929W901009W901116W901121W901219W910122W910219W910310W910627W910821W910927W911016W911202W911209W920210W920311W920404W920714W920718W920718bW920720W920723bW920814W920902W920903W920903bW920925W920925cW921013W921013bW921022W921029W930612W930703W930706W940419W940701W940703W940907174.68357.19131.15336.73185.91252.79276.31133.14169.68348.6139.9330.39348.62297.48212.94184.10199.60353.0849.70297.37171.97261.92154.15132.25323.07221.4321.37296.17145.67287.08259.83279.08295.87301.54201.11330.8087.97117.71254.4335.82109.24311.06281.42358.82145.67133.20161.42-44.32-38.56-37.7934.8330.6216.20-45.18-36.72-6.4830.4024.9772.40-54.00-71.2358.546.38-2.60-72.01-42.72-4.71-22.59-44.1947.89-36.3922.53-30.75-3.36-55.95-11.2027.33-45.17-22.8135.4622.5942.2025.481.9333.41-9.64-0.42-71.208.04-20.18-48.19-6.1528.11-31.81289.46347.89258.7692.09181.4034.92349.28258.92265.8399.28151.95128.24329.84324.06104.43279.48316.32311.26250.2435.35278.81345.18167.78258.2073.92330.15143.31341.69246.4659.26343.5310.8770.0261.53100.9681.64204.27186.9910.21166.28282.4854.1014.23326.63241.88197.08273.9316.64-72.613.09-19.2582.9933.74-14.595.0049.59-27.98-31.7310.26-57.77-30.2655.6167.6459.57-43.81-56.37-15.0536.34-5.1553.514.65-20.8526.01-64.88-29.5130.318.69-4.47-7.045.81-5.0573.49-23.60-12.3126.2019.97-55.37-23.56-20.65-7.83-66.2733.5437.6923.880.540.600.240.790.220.430.450.770.440.510.480.550.550.660.930.241.080.380.800.780.800.601.080.260.630.480.750.621.070.191.130.410.670.220.730.341.500.250.521.230.680.590.421.001.540.120.840.730.780.320.810.300.480.670.800.490.720.520.590.590.690.950.551.090.430.940.920.940.781.190.330.660.520.780.651.090.281.240.460.700.300.760.391.510.320.721.250.700.770.471.021.560.240.98

S.Y.Sazonovetal.:GRANAT/WATCHcatalogueofgamma-raybursts7

400450403500450 +90

450350450300250040300450+180

350250300500035450400-180

350300030040-90

Fig.6.SkyexposuremapinGalacticcoordinatesconstructedfromthedataofWATCHobservationsin1989–1994.Exposuretimeismeasuredindays

+90

+180

350Fig.7.Positionsof47burstsourcesintheskyinGalacticcoordinates.Thecirclesshownarethetwice-zoomedreallocalization

circles

400-180

-90

8S.Y.Sazonovetal.:GRANAT/WATCHcatalogueofgamma-raybursts

5.Summary

TheWATCHGRBcatalogueprovidesasetof47bursterpositions,39ofwhichhaveatotal(statisticalplussystem-atic)uncertaintyoflessthan1deg.For13eventserrorboxeswithradiismallerthan30arcminarenowavail-able.TheWATCHsamplethuscontributestothecur-rentlyavailablelistofmoderatelyaccurateGRBpositionsanumberoflocationscomparabletothataccumulatedbytheinterplanetarysatellitenetworksandneverbeforeobtainedwithanystand-aloneinstrument.WethereforehopethatthenewdatapresentedherewillbeusefulforburstercounterpartsearchesindifferentenergyrangesaswellasforstudyingpossiblecorrelationsinGRBpositions.

TheWATCHGRBsappeardistributedbothisotropi-callyonthecelestialsphereandhomogeneouslyinspace.Thesetworesultsseemtobeconsistentwiththeimpli-cationsfromthethirdBATSEcatalogue,asWATCHisaboutanorderofmagnitudelesssensitivethanthelarge-areadetectorsofBATSE,andthebrighterburstsintheBATSEcataloguealsoshowbothisotropyandhomogene-ity(Meeganetal.1996).

ThelightcurvesofmostburstsobservedbyWATCHshowhardeningoftheenergyspectrumneartheburstmaxima.Severalburstsdemonstrateasignificant8–20keVactivityintheabsenceofhardX-rayfluxeitherbeforeoraftertheGRB.Toallappearances,theseX-rayeventsaccompanyinggamma-rayburstsarehigherenergymanifestationsofthesoftX-rayprecursorsandtailsob-servedat1.5–10keVbyGINGA.

Acknowledgements.WethankallspecialistsinvolvedintheGRANAT/WATCHexperiment,inparticular:thestaffsoftheLavochkinAssociation,theEvpatoriaDeepSpaceControlCenterandthegroupofB.S.Novikovmaintainingtheinstru-mentoperations;thegroupofA.V.DyachkovatIKIRANprocessingtelemetrydata;N.G.HavensonandE.M.Chura-zovfortheirassistanceindeterminingthespacecraftattitude.Theparticipationoftherussianco-authorsinthisprojectwassupportedbyRussianBasicResearchFoundationgrantNo.95-02-05938andINTASgrant93-3364.SSacknowledgesthehospitalityoftheMax-Planck-Institutf¨urAstrophysikwherethefinalmanuscriptofthispaperwasfinished.

References

BrandtS.,1994,Ph.D.Thesis,UniversityofCopenhagenBrandtS.,LundN.,Castro-TiradoA.J.,1994.In:FishmanG.J.,BrainerdJ.J.andHurleyK.(eds.)AIPConferenceProc.307,Gamma-RayBursts.AIP,NewYork,p.13

GolenetskiiS.V.,AptekarR.L.,GurianY.A.etal.,1991,SvA17,195

Castro-TiradoA.J.,1994,Ph.D.Thesis,UniversityofCopen-hagen

Castro-TiradoA.J.,BrandtS.,LundN.etal.,1994.In:Fish-manG.J.,BrainerdJ.J.andHurleyK.(eds.)AIPConfer-enceProc.307,Gamma-RayBursts.AIP,NewYork,p.17HanlonL.O.,BennettK.,CollmarW.etal.,1994,A&A285,161

HurleyK.,LundN.,BrandtS.etal.,1994.In:FishmanG.J.,BrainerdJ.J.andHurleyK.(eds.)AIPConferenceProc.307,Gamma-RayBursts.AIP,NewYork,p.364

KouveliotouC.,MeeganC.A.,FishmanG.J.etal.,1993,ApJ413,L101

LestradeJ.P.,DezalayJ.-P.,AtteiaJ.-L.etal.,1993,A&AS97,79

LundN.,1986.In:CulhaneJ.L.(ed.),SPIEProc.597,X-rayInstruments.Int.Soc.forOpticalEng.,Bellingham,Wash-ington,p.95

MeeganC.A.,PendletonG.N.,BriggsM.S.etal.,1996,ApJS106,65

MurakamiT.,InoueH.,NishimuraJ.etal.,1991,Nat350,592MurakamiT.,OgasakaY.,YoshidaA.andFenimoreE.E.,1992.In:PaciesasW.S.,FishmanG.J.(eds.)AIPConfer-enceProc.265,Gamma-rayBursts.AIP,NewYork,p.28OgasakaY.,MurakamiT.,NishimuraJ.etal.,1991,ApJ383,L61

SchmidtM.,HigdonJ.C.,HueterG.,1988,ApJ329,L85

SunyaevR.A.,ChurazovE.M.,GilfanovM.R.etal.,1993,ApJ402,579

TerekhovO.V.,DenisenkoV.V.,LobachevV.A.etal.,1994,SvA20,323

TerekhovO.V.,DenisenkoV.V.,LobachevV.A.etal.,1995,SvA21,83

ThisarticlewasprocessedbytheauthorusingSpringer-VerlagLATEXA&AstylefileL-AAversion3.

S.Y.Sazonovetal.:GRANAT/WATCHcatalogueofgamma-raybursts

Table1.BasicinformationonGRANAT/WATCHgamma-raybursts

9

W900118W900120W900123W900123bW900126W900222W900308W900404W900413W900618W900708W900708bW900901W900925W900929W901009W901015W901027W901112W901116W901121W901219W910117W910122W910219W910310W910425W910517W910627W910717W910717bW910721W910814W910815W910817W910821W910901W910925W910927W911016W911022W911202W911205W911209W920116W920130W920210W920302W920307W920311W920325W920404W920419W920615W920711W920714174006227±2720375161±160142177.5±6.518443115±1018042222.6±1.2115634246±3809390929±181754350.38±0.0410113037±1523122473±20112810181±2718445494±12013340195±1220252245.9±2.2014926159.4±2.600154814.6±3.7

084446–04210113.2±9.314574121.9±8.901421214.5±8.9180711188±1221524339±1000581351±1215140094.8±7.111452459.2±1.913020337.10±0.80003805104±1305023837.1±6.404292314.8±2.40433069.2±1.113072314.7±6.419301729.4±9.0

191438–12342536.6±8.917092517.6±9.710334273±1205243413±1103351045±1023270028.7±6.2110134264±19041400–20285116.5±1.123045529.5±6.418361122.1±2.5

183047–002836287±1009535236.1±6.206171658.8±5.600181158.8±8.002202629.0±6.217173751.7±3.31311452.5±1.020070126±11142458–16091780.2±8.913043328.9±5.1102.1±4.928.3±4.28.6±1.125.3±3.579.7±1.5110.8±5.24.7±2.21.04±0.20

–17.2±3.3108.9±8.159.9±5.038.9±4.333.6±3.076.8±4.611.7±1.812.8±2.917.7±1.84.7±1.311.3±1.861.5±3.746.1±5.618.6±3.4

–69.3±2.977.8±3.157±1059.0±4.348.1±3.127.8±2.515.9±3.928.4±4.7

–74.8±5.420.6±2.7106.9±7.812.6±2.717.2±3.650.6±3.565.9±5.48.9±2.769.6±2.114.4±2.626.3±1.73.0±1.3136.8±6.325.8±2.612.2±2.316.9±2.086.7±4.131.3±1.79.19±0.954.1±1.56.7±1.783.7±5.930.8±1.7169±1165.3±9.213.2±2.640.6±8.167.3±2.944±1413.7±3.86.14±0.56

–59.5±7.2279±17183.2±8.8176.9±8.643.6±6.5188±1052.0±3.728±1547.8±4.318.5±2.940.8±3.792.8±7.0146±12102±24–124±19301.4±8.3203±30193±3469±2022±1122±195±21–-3±22-7±13179±3422±14-18±1776±18135±453±14152±1350±2071.7±4.77.9±3.480±1589.6±7.321.0±6.026.5±5.4252±1350.5±4.428.1±2.621.9±4.05.9±9.5357±3481.8±3.21.65±0.142.31±0.481.54±0.371.60±0.390.84±0.040.41±0.132.9±1.55.9±1.2–

3.46±0.802.56±0.253.06±0.304.54±0.551.30±0.232.45±0.204.44±0.752.1±1.32.70±0.373.8±1.23.59±0.681.51±0.153.17±0.475.4±1.6–

1.80±0.293.87±0.193.51±0.803.28±0.641.44±0.440.80±0.411.4±1.20.18±0.74

-0.05±0.30-0.38±0.681.68±0.341.7±1.1-1.0±1.01.51±0.382.06±0.710.4±1.62.19±0.213.5±1.52.73±0.262.6±1.50.59±0.113.47±0.451.72±0.591.57±0.372.91±0.211.61±0.173.06±0.425.2±2.10.8±1.44.27±0.522.65±0.180.87±0.100.67±0.130.63±0.091.01±0.1018.95±0.521.73±0.100.16±0.067.5±2.9–

0.46±0.112.57±0.200.87±0.140.74±0.093.22±0.483.22±0.451.85±0.370.67±0.111.04±0.100.37±0.101.21±0.120.65±0.072.30±0.220.73±0.14

7.22±0.514.71±0.501.15±0.343.06±0.2010.38±0.897.09±0.941.04±0.271.76±0.30

2.56±0.244.16±0.612.53±0.260.59±0.110.57±0.184.19±0.251.07±0.120.85±0.196.24±0.520.70±0.154.26±0.420.41±0.111.31±0.151.06±0.140.47±0.111.29±0.115.05±0.232.46±0.303.67±0.420.27±0.070.79±0.172.11±0.201.59±0.111.81±0.231.91±0.301.41±0.212.08±0.2615.60±0.793.21±0.270.76±0.1134.2±8.2

–2.93±0.269.49±0.482.48±0.263.99±0.227.3±1.19.3±1.19.55±0.931.80±0.642.30±0.241.31±0.213.22±0.262.00±0.138.00±0.544.6±1.0

–31.2±3.322.6±1.44.13±0.995.7±1.520.8±4.98.4±3.64.2±1.31.1±1.2

–2.14±0.938.4±2.86.1±1.11.19±0.640.77±0.858.4±1.13.46±0.922.1±1.014.8±2.92.3±1.112.7±1.20.53±0.301.73±0.354.12±0.410.69±0.282.21±0.2714.48±0.737.56±0.9214.3±1.30.72±0.190.76±0.9310.0±1.24.60±0.24

bKbKGPhbKPhbPhSbPhb

Ph

PhPh

bPhbPhSb

PhUPhPhU

cb

PhU

GPPhSUPUPUBCPUb,c

PPhSUBCPPhUBGPPhUbUBU

dBCGOPPhSUbGPhbPhUGPhSb

PhBBDU

BDGPPhUBUBDPUBBUYBPc

BBPhSBBU

BDPPhSUBDPPhSUBUBUB

b

BDPUYBPPhSU

10S.Y.Sazonovetal.:GRANAT/WATCHcatalogueofgamma-raybursts

Table1(continued)

W920718W920718bW920720W920723W920723bW920814W920902W920903W920903bW920925W920925bW920925cW921001W921013W921013bW921021W921022W921025W921029W930106W930116W930609W930612W930703W930705W930706W930710W930714W930910W930927W940307W940329W940419W940619W940701W940703W940711W940907W94091014210501200600012320212204202318151312150210001112050316120407181921210418202340325300031029352930454603320020215538374707442639131413121856151132444014365743442049093502460142202454324246004005400630203018314204301529440732295510205664.6±8.84.50±0.80117±2032.7±8.053.0±3.721.6±6.27.3±1.1131.8±6.323.8±1.957.1±6.812.9±5.6282.1±8.8

–12.9±2.0344.6±3.732.4±7.995±1321.6±8.880.1±8.90.06±0.037.3±5.150±15130±517.3±1.1152±294.50±0.8014.4±6.214.4±8.879.8±6.250±1114.3±8.772±1184±1072±11201±2345.6±7.932.4±5.626±1151±1558.4±2.512.92±0.7441.9±3.2

–59.4±2.110.5±1.311.7±1.142.0±3.461.5±2.422.2±2.710.8±1.3120.3±4.84.8±1.36.50±0.85114.2±4.914.6±2.057.2±2.84.3±1.918.8±2.1

–3.9±1.26.4±1.929.9±3.113.5±1.636.1±3.816.71±0.814.5±1.3–27.8±6.511.4±1.62.9±1.4–59.5±3.5

–54.9±4.2239.2±4.611.1±1.920.9±2.638.1±3.826±1029.4±1.594±10–209.9±4.319.9±2.585.2±3.0107.4±7.3171.3±6.044.5±5.520.2±3.8207±1013.6±2.715.9±1.9209±1124.8±5.949.8±5.920.3±3.827.1±5.0

–13.0±2.918.2±3.677.0±7.537.3±3.225.3±7.437.8±1.612.8±3.0

–78±1425.4±4.78.5±2.6–213±12–307±161010±170.2±6.6115±1051±130.46±0.182.28±0.182.25±0.29

–3.54±0.151.89±0.347.26±0.762.56±0.272.78±0.152.00±0.351.87±0.421.73±0.112.80±0.962.46±0.441.84±0.131.70±0.470.87±0.114.7±2.21.44±0.31

–3.3±1.32.8±1.02.57±0.372.75±0.410.70±0.222.26±0.152.8±1.0–2.82±0.852.21±0.522.8±1.6–3.59±0.30

–5.61±0.534.22±0.110.03±0.605.50±0.851.36±0.372.02±0.113.69±0.320.72±0.10

–7.83±0.410.56±0.082.02±0.350.58±0.106.99±0.452.23±0.381.00±0.121.55±0.110.73±0.301.15±0.218.11±0.430.82±0.131.84±0.300.36±0.100.90±0.09

–0.37±0.120.28±0.091.00±0.093.01±0.520.45±0.088.48±0.420.42±0.11

–0.88±0.260.59±0.080.18±0.08

–2.02±0.14

–1.18±0.119.36±0.220.53±0.110.95±0.101.09±0.112.40±0.399.21±0.731.69±0.30

–41.1±1.21.09±0.1615.7±1.11.80±0.2227.7±1.38.13±0.972.65±0.363.50±0.241.80±0.635.92±0.6126.8±1.21.56±0.364.95±0.721.04±0.211.18±0.18

–1.24±0.280.96±0.183.48±0.2316.4±1.30.99±0.1624.8±1.00.87±0.24

–2.74±0.591.70±0.230.59±0.16

—6.21±0.49

–2.51±0.3940.46±0.930.53±0.405.62±0.432.30±0.40

d

bd

BUBPhUBPUBDPhUPPhSUBEUBDPhUPhUPhUPhUBUUBBUPhUB

BEUYPhUBU

BDPhSUYBUBU

BCDMPhUBU

BMPhUBUBPhUBUBUBBUBPhUBCPhUBU

BPhSUYBPh

d

d

c

S.Y.Sazonovetal.:GRANAT/WATCHcatalogueofgamma-raybursts11

Fig.2.Timehistoriesofthegamma-rayburstsdetectedbyWATCHinthetwoenergyranges:8–20keV(upperpanels)and20–60keV(lowerpanels).Timerunsrelativetotheburststart(seeTable1).Thebackgroundcountrateisindicatedbythedashedline

12S.Y.Sazonovetal.:GRANAT/WATCHcatalogueofgamma-raybursts

Fig.2.continued

S.Y.Sazonovetal.:GRANAT/WATCHcatalogueofgamma-raybursts13

Fig.2.continued

14S.Y.Sazonovetal.:GRANAT/WATCHcatalogueofgamma-raybursts

Fig.2.continued

S.Y.Sazonovetal.:GRANAT/WATCHcatalogueofgamma-raybursts15

Fig.2.continued

16S.Y.Sazonovetal.:GRANAT/WATCHcatalogueofgamma-raybursts

Fig.2.continued

S.Y.Sazonovetal.:GRANAT/WATCHcatalogueofgamma-raybursts17

Fig.2.continued

18S.Y.Sazonovetal.:GRANAT/WATCHcatalogueofgamma-raybursts

Fig.2.continued

因篇幅问题不能全部显示,请点此查看更多更全内容