随弹性体含量的增加,冲击强度呈上升趋势。弹性体对PP的增韧存在一个临界含量,只有超过这个临界含量,弹性体才表现出明显的增韧效果,对于PP,POE的脆韧转化点在10%,而EPDM在15%,换言之要达到相同的增韧效果,所需POE的用量要小于EPDM。当弹性体质量分数为15%时,POE体系的冲击强度明显高于EPDM体系。两体系的屈服强度和弯曲强度均随弹性体用量的增加而降低,而EPDM体系的降低幅度略微大于POE体系,在弹性体的质量分数为20%时。 EPDM以比较规则的球状粒子分布于PP基体中,形成了典型的“海-岛”结构,并且空洞于连续相PP界面较为清晰,说明EPDM粒子与连续相PP的界面黏结力较小,其断面相对于POE体系来说较光滑平整,断裂特征显示出较多的脆性。而POE是以片状或条状等很不规整的形状分布于PP基体中的,共混物两相之间形成了互锁的网络结构,在弹性体相间有PP微纤相联,断面粗糙,呈现典型的韧性断裂。因此POE用作PP的增韧剂,具有明显的优势。
(四)动态硫化法制备聚丙烯/三元乙丙橡胶热塑性弹性体
EPDM是传统的橡胶,而PP是传统的塑料,这两者通过共混和动态硫化,则可制备出性能优异的热塑性弹性体,这是橡塑并用的典型例子。EPDM/PP是最早应用于实际并走向市场的一类热塑性弹性体(TPE、TPV),它既具有传统橡胶的性质,又能用热塑性塑料加工设备和方法进行加工。动态硫化是制备新型热塑料弹性体的一种新方法,这种方法制得的热塑性弹性体具有良好的性能,甚至在某些性能上优于嵌段共聚热塑料弹性体。用这种方法制备热塑料弹性体并不需要合成新聚合物,而只需将现有聚合物进行共混,因此节约了开发新聚合物品种时的巨额资金投入。制备动态硫化TPV的关键技术在于共混体系相畴大小、形态结构和橡胶相粒径的控制方法和手段。EPDM/PP中EPDM的交联程度是影响相形态的一个重要因素。只有当共混体系中EPDM有适宜的交联程度,EPDM易被剪切成微米级颗粒时才能制得性能好、具有传统橡胶特征的EPDM/PPTPV(EP TPV)。EP TPV
具有优异的综合性能,如加工成型方便、边角废料可回收利用、设备投资少、耐热性好、耐化学腐蚀性好、耐溶剂性及电绝缘性良好等,被广泛用于汽车配件、电线电缆、土木建筑、家用电器等行业,逐渐取代传统橡胶。
制备动态硫化法PP/EPDM TPV的影响因素可归纳如下几点。
(1)树脂组分特征的影响 在橡胶表面能相近的条件下,选择MFR小(即分子量大)且结晶度高的PP树脂作为基备的TPV性能最好,且随着PP的MFR增大,TPV的奶溶胀性、耐压缩性下降。
(2)橡胶相组分特征的影响 橡胶相EPDM的交联速率增加,则交联效应增大,橡胶相平均粒径减小,交联密度增大,TPV的耐压缩性、耐溶胀性提高,且体系微观相态较均匀,具有较好的加工形态稳定性。但若EPDM的交流速率过高,橡胶相在反应挤出后期易发生硫化返原,使交联密度减小,导致制品的力学性能不佳。所以EPDM的交流速率应适宜。橡胶相粒径小,交联密度高,TPV拉伸强度大,扯断永久变形低。EP TPV的橡胶相平均粒径在0.05μm一下,由于橡胶相粒子已足够小,此时橡胶相粒径对PP基体结晶度的影响起了主要作用。橡胶相粒径越小,橡塑界面面积越大,使得PP基体的结晶度越低,故TPV的拉伸强度和断裂能减小,扯断伸长率和扯断永久变形减小。所以,EPDM应以合适的粒径分布在PP基体中才能制得性能良好的TPV。
(3)橡塑比的影响 随橡塑比减小(即PP含量增加),EPDM交联度下降。这是因为PP对硫黄及硫化剂有稀释作用,同时在高温过程中硫黄挥发损失。因此,要使EPDM/PP中EPDM有适宜交联程度,应使硫黄及助剂的用量稍有增加以弥补上述两种效应。随着EPDM含量增加,共混物的硬度、拉伸强度、弯曲强度、撕裂强度、300%定伸应力、永久变形、耐溶胀性、加工流动性减小,弹性、耐压缩性、黏度、冲击强度增大,而扯断伸
长率随EPDM橡胶含量的增加而降低。当共混物中EPDM含量超过一定值时,其强大又逐渐下降。EPDM含量为30%~40%的共混物冲击强度最佳。硫化前,当橡塑比为50/50和60/40时,EPDM和PP形成两个连续相,当橡塑比大于60/40时,发生相反转,共混物中EPDM橡胶由分散相变为连续相。已硫化的EPDM颗粒作为分散相分散于PP连续相中,形成“海-岛”结构,且这种相态一般不随橡塑比变化而改变。相态结构越均匀,EPDM相粒子粒径越小,粒子交联程度越高,则挤出物具有越好的加工流动性和加工形态稳定性。橡塑比越高,单位体积内EPDM粒子数目越多,不同EPDM粒子间的联系越紧密。当橡塑比高到一定程度时,不同EPDM粒子间易发生聚结,体系中可能形成胶粒、小胶粒聚集网络及大胶粒聚集网络等不同结构层次的结构单元,因此橡塑比稍大一些好。