您好,欢迎来到华佗小知识。
搜索
您的当前位置:首页基于模糊神经网络的PID张力控制系统

基于模糊神经网络的PID张力控制系统

来源:华佗小知识
维普资讯 http://www.cqvip.com

第29卷第6期 2008年6月 文章编号:0253。9721(2008)06—0109—04 纺 织 学 报 Journal of Textile Research Vo1.29 No.6 Jun.2008 基于模糊神经网络的PID张力控制系统 李 革,贾元武,张建新,赵 匀 (浙江理工大学机械与自动控制学院,浙江杭州 310018) 摘要 由于卷绕张力控制系统是一个复杂、联动、时变、非线性系统,采用传统PID控制不能解决系统的非线性 时变和PID参数的在线整定难等问题,为此提出一种控制算法——模糊神经网络PID复合控制方式,可根据系统的 偏差及其变化率实时对PID的3个参数进行优化,达到具有最佳组合的PID控制,从而实现PID控制的自适应和智 能化性能。通过MatLab软件,进行传统PID控制与模糊神经网络PID控制动态性能的仿真比较,结果表明系统采 用模糊神经网络PID控制具有更好的动、静态特性和自适应性。 关键词张力控制;模糊神经网络;PID控制;仿真 文献标识码:A 中图分类号:TS 195.38 Tension control system based on fuzzy—neural network PID LI Ge,J1A Yuanwu,ZHANG Jianxin,ZHAO Yun (College ofMechanical and Automation,Zhejiang Sci—Tech University,Hangzhou,Zhejiang 310018,China) Abstract Since the winding tension control system is a complicated,tandem driving,time change and non- linear one,using traditional PID control can not settle the problems of dynamic change of the non-linear system and PID parameter adjustment online.The paper gives one contolr algorithm--the combination method of fuzzy-neural network PID control,which can optimize three parameters of PID in operation according to error and error rate at real time,achieve the PID control with the best combinations,and realize the adaptive and intelligent performance of PID contro1.The fuzzy-neural network PID control is compared with traditional PID by simulation through MatLab.The results show that the system has better dynamic.static and adaptive performances by using the fuzzy—neural network PID control strategy. Key words tension control;fuzzy—neural network;PID control;simulation 卷绕成型的张力控制对卷材的质量有着十分重 过训练来学习给定的经验,并自动推导出规则,这样 可以提高张力控制系统对外界干扰的反应能 要的影响。目前,大多张力控制系统采用传统控制 方式,其结构简单,容易实现,鲁棒性强,但由于张力 控制的时变性,系统的性能会变差,甚至变得不稳 定。另外,在对参数整定过程中,往往得不到全局性 的最优值,不具有参数在线整定功能,对系统模型的 精确性依赖较强,因此,无法从根本上解决系统动态 品质和稳态精度的矛盾。张力控制系统采用模糊神 力¨1 。本文设计了一种新型的控制器——模糊神 经网络控制器,对由于卷径增大引起的张力变大进 行控制,使张力保持恒定,满足卷材质量要求。 1 张力控制系统原理及数学模型 1.1张力控制系统原理 本文的张力控制系统采用张力控制器作为主控 制器,以交流变频电机作为执行元件的张力闭环控 制系统,如图1所示。交流变频调速电机轴驱动卷 经网络具有十分明显的优势,即模糊控制无需建立 被控对象的数学模型,对张力控制系统的时滞、非线 性、时变性具有一定的适应能力,且鲁棒性能较好, 同时神经网络可为模糊控制器提供自学习功能,通 收稿日期:2007—05—21 修回日期:2007—11—05 基金项目:浙江省科技厅资助项目(2004C31077) 作者简介:李革(1958一),男,教授,博士。主要研究领域为机构动力学。E-mail:lige918@yahoo.eom.en。 维普资讯 http://www.cqvip.com ・ 1 10・ 纺织学报 第29卷 绕轴,系统工作时,通过气缸设定系统张力值,气缸 带动摆杆,张力控制器给变频器输入电压信号,控制 交流变频凋速电机的转速。初始稳定状态时,卷材 张力和气缸对摆杆的作用力使摆杆处于平衡位置, 当卷绕材料张力变大时,摆杆逆时针转动,摆动角度 通过传感器测出并反馈到控制器中,控制器输出指 令控制变频器进而控制电机使其转速减小,维持卷 材张力值不变,摆杆又回到平衡位置。当由于外界 干扰导致张力值发生较小波动时,气缸和摆杆起到 了缓冲的作用,进行张力微调,同时反馈信号输入控 制器,通过调节后的指令信号控制变频器进而控制 电机,使系统尽快恢复到平衡状态,卷材张力满足要 求,这样就形成了闭环控制系统。 卷绕 图l 张力控制系统结构图 Fig.1 Structure map of tension control system 1.2张力控制系统数学模型 在实际卷绕过程中,系统总要受到外界因素的 干扰,如卷材质量密度、实时卷径、转动惯量、阻尼系 数、转速等。设卷绕材料的质量密度为J0;卷材幅面 宽度为B;卷芯轴直径为D。;其转动惯量为常量,。, 则有卷绕系统动力学动态方程: = +2lfy 1+( ̄1pBD o4 v一2J0 ). dD 3 ̄pBv D ・dD ,1、 D .d£ 16 d£ 式中:F为卷材张力; 为传动比;为机械传动效 率; 为电动机阻尼系数。 上式说明在卷绕运行过程中,电动机的驱动转 矩 受卷材张力F、卷径D及其变化率dD/dT、卷材 线速度等因素的影响 ;因此,卷绕过程是一个多 变量动态时变、非线性的过程,较为复杂,采用模糊 神经网络控制器可有效解决上述问题。 2模糊神经网络控制器的设计 2.1模糊神经网络控制器的结构和原理 为解决上述控制中的问题,需要一种具有自学 习、自调整、自适应能力的控制策略。而模糊逻辑和 神经网络各有特长,存在着互补性,将二者有机地结 合,融合各自的优点,可得到性能更好的控制器。模 糊神经网络PID控制器的结构如图2所示。 图2模糊神经网络PID控制器结构图 Fig.2 Structure map of fuzzy・neural PID controller 选取张力偏差e及其变化率e,作为模糊模块 的输入,对2个状态变量进行模糊量化处理,利用模 糊控制的鲁棒性和非线性控制作用,对作为实现模 糊规则的神经网络(NN)的输入进行预处理,避免了 在神经网络的活化函数采用Sigmoid函数时,直接输 入量过大而导致输出饱和,使得对输入不再敏感的 缺点。神经网络用于表示模糊规则,经过神经网络 的学习,以加权系数的形式表现出来,规则的生成就 转化为加权系数初值的确定和修改。根据系统的运 行状态,调节PID控制器的参数,以期达到某种性能 指标的最优化。图中“(k)为控制器输出,Y为实际 张力输出,r为设定张力输出值。该系统由1个模 糊神经网络和1个标准PID控制器组成,经典增量 式数字PID的控制输出为 H(k)=H(k一1)+K [e(k)一e(k一1)]+Kte(k)+ 。[e(k)一2e(k一1)+e(k一2)] (2) 2.2模糊化 取张力偏差和偏差变化率作为2个模糊变量, 二者都有模糊语言变量表示为大(B)、中(M)、小 (s),各模糊语言变量的隶属度函数根据实际情况取 三角形函数,如图3所示。l e l和l e l为偏差和偏差 变化率的绝对值,它们的模糊区间划分是根据实际 数据和经验值选取,在本控制器的设计中l e l 为 2,l e l 2为5,l e l 3为9,l e l 1为0.5,l e l 2为1.6, l e,l 为2.2。 维普资讯 http://www.cqvip.com

第6期 李 革等:基于模糊神经网络的PID张力控制系统 。1 1 1。 KI】 It1 2 lc=(I l I (b)Kl 图3 I eI和I e I录属度函数 Fig.3 I 8I and I e I subjection function 2.3神经网络NN 控制系统采用4层神经网络(NN)结构,输入节 点为I e I和I e,I,即2个结点,如图4所示。模糊化 层对应经模糊量化处理后的系统状态变量,因此有 6个结点,模糊推理层结点为各模糊集合的组合,因 此取9个结点,其神经元的活化函数可取正负对称 的Sigmoid函数,输出层结点分别对应PID控制器的 3个可调参数 , , ,由于 , , 不能为负 值,所以输出层神经元的活化函数取非负的Sigmoid 函数。 采用BP网络学习算法来修正可调参数,取性 能指标函数为 .,= 【r(k+1)一Y(k+1)】 (3) 依最速下降法修正网络的加权系数,即按J对加权 系数的负梯度方向搜索调整,并附加1个使搜索快 速收敛全局极小的惯性项,有网络权值的学习算法 如下: 5.w( +1)=一叩 +a△似( ) (4) 式中:似为网络输出结点与上一层各结点的连接 权;叼为学习速率;a为惯性系数。 输入层 模糊化层 模糊推理层 输出层 图4模糊神经网络结构图 Fig.4 Structure map of fuzzy-neural controller 2.4模糊神经网络PID控制算法 各层加权系数的初值取[一1,1]区间上的随机 数。学习速率77=0.25;惯性系数d=0.05,k=1。 1)采样得到Y(k)值与设定张力值r(k),计算 每个迭代步骤k的控制偏差e(k):r(k)一 Y(k)。 2)对偏差e(k)及其变化率e (k)进行模糊化 处理,作为模糊推理层的输入。 3)计算神经网络NN的各层神经元的输入和输 出,NN输出层的输出即为PID控制器的3个可调参 数Kp(k),KI(k), (k)。 4)根据经典增量式数字PID计算控制输出 “(k),参与控制和计算。 5)进行神经网络学习,在线调整各层的加权系 数,实现PID控制参数的自适应调整。 6)置k=k+1,再次采样计算张力偏差e(k) 。 3 仿真结果 取100组现场采集到的输入输出数据作为模糊 神经网络的训练样本,当误差小于0.003时停止学 习,用训练好的模糊神经网络进行推理,就得到PID 控制参数的输出。应用此模糊神经网络可实现PID 参数的自适应调整。利用普通PID算法和模糊神经 网络PID算法分别对阶跃信号进行跟踪,仿真结果 如图5所示。可以看出,模糊神经网络对张力控制 系统的控制能达到理想的控制目标值。 维普资讯 http://www.cqvip.com 纺织学报 第29卷 I 4 1 2 1 0 O 8 毯 善0.6 0.4 O 2 0 0 0 5 1 0 时间/s 图5单位阶跃信号跟踪响应曲线 Fig.5 Tracking response curve of unit step signal 4结束语 本文充分利用了神经网络的自适应、自学习能 力,将模糊神经网络应用到PID控制中,在线对PID 参数进行调整,以解决参数在线整定难的问题。从 仿真结果可以看出,张力控制系统中采用模糊神经 网络PID后无论是稳定时间,还是超调量,都比传统 PID控制系统好得多。 参考文献: 张吉礼.模糊一神经网络控制原理与工程应用[M].哈 尔滨:哈尔滨工业大学出版社,2004. [2] 闻新,周丹,力,等.MATLAB神经网络应用设 计[M].北京:科学出版社,2001. [3] 陈振翼,杨公源,沈洪勋.张力控制系统[M].北京:印 刷工业出版社,1987. [4] 王春香,付云忠,杨汝清,等.纤维缠绕过程中的张力 分析[J].复合材料学报,2002(3):120—123. [5] 杨娅君,陈德传.织物带材收卷张力的恒应力分布控 制的研究[J].纺织学报,2004,25(1):40—41. [6] 李革,梅靖,赵匀,等.复贴机张力的模糊自整定控 制[J].纺织学报,2006,27(6):39—43. [7] 陶永华,尹怡欣,葛芦生.新型PID控制及其应用[M]. 北京:机械工业出版社,2000. 

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- huatuo0.cn 版权所有 湘ICP备2023017654号-2

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务