RashidSunyaev
1Max-Planck-Institutf¨urAstrophysik,Garching,Germany2
SpaceResearchInstitute,Moscow,Russia
Abstract.Accretingblackholesandneutronstarsatluminositiesabove0.01ofthecriticalEddingtonluminosityhavealotofsimilarities,butalsodrasticdifferencesintheirradiationandpowerdensityspectra.Theefficiencyofenergyreleaseduetoaccretionontoarotatingneutronstarusuallyishigherthaninthecaseofablackhole.Thetheoryofthespreadinglayeronthesurfaceofanaccretingneutronstarisdiscussed.Itpredictstheappearanceoftwobrightbeltsequidistantfromtheequator.Thislayerisunstableanditsradiationfluxmustvarywithhighfrequencies.
1Introduction
OneofthemostimportantpropertiesofaccretingblackholesinourGalaxywasdiscoveredbyRiccardoGiacconiandtheUhuruTeamin1971,whentheydiscoveredthespectraltransitionofCygX-1fromthesofttothehardstate(Tananbaumetal.1972).Simultaneously,aradiosourceappearedinthevicinityofCygX-1.RadioobservationspermitteditslocalizationwithhighaccuracyandtheidentificationoftheX-raysourcewithabrightstarofthe9thmagnitude.Immediatelythereafter,measurementsofitsopticalspectrumshowedthatthisstarismemberofa5.6-daynon-eclipsingbinarywithanopticallyinvisiblecompanion(Bolton1972).Lyutyetal.(1973)interpretedtheobservedellipsoidalvariationsinthebrightnessoftheopticalstarasaresultofthegravitationalinfluenceofanearbyblackholeinvisibleinopticallight.TodayCygX-1isthebest-knownsteadilyaccretingblackholeinourGalaxy.Nowwehavealistwithmorethan12excellentblack-holecandidatesandmanyofthemshowsimilarsoft-tohardstatetransitions(Tanaka&Shibazaki1996).Recently,CygX-1experiencedthethirdtransitionfromahardtoasoftstatein18years(Fig.1).
Suchtransitionsbecameasignatureofblackholes.Todayweknowthatallgalacticblack-holecandidatesshowaverysoftX-rayspectrum.Aspredictedbystandardaccretiontheory,thisisamulticolordiskspectrum(cf.Shakura&Sunyaev1973)orapower-lawhardX-rayspectrumwithaWien-typedecayathighenergiesformedduetocomptonization(Sunyaev&Tr¨umper1979,Sunyaev&Titarchuk1980).Sometimeswedonotevenseethehighfrequencydecayyet.Therefore,usuallywhenanewlydiscoveredX-raytransientshowsanextremelyhottailinitsX-rayspectrum,weimmediatelyrefertoitasablack-holecandidate.
114RashidSunyaev
Fig.1.ThespectralenergydistributionofCygX-1inthesoft(filledcircles)andhard(opencircles)spectralstate.DataareshownofnearlysimultaneousASCAandRXTEobservationsonMarch26,1996(hardstate)andMay30,1996(softstate);cf.Gilfanov,Churazov&Revnivtsev(2000).
Neutronstarswithoutmagneticfieldsandblackholeshavepracticallythesamegravitationalpotentialandmustshowmanysimilarities.Nevertheless,weknownowthattheyhaveverydifferentX-rayspectraandvariabilitycharacteristics.Oneofthegreatsurprisesofthelast15yearsofobservationsisthediscoverythatneutronstarsalsoexhibitsoft-tohard-statetransitions(Fig.2).
Neutronstarswithsmallmagneticfieldsusuallyhavespectrawhicharesignificantlyharderthanthespectraofmulticoloraccretiondisksaroundblack-holecandidatesinahigh/softstate.Buttheirspectraareusuallymuchsofterthanthespectraofblack-holecandidatesinthehard/lowstate.Some-timesweobservehottailsinthepersistentfluxofX-raybursters.However,
AccretionontoBlackHolesandNeutronStars115
Fig.2.TheenergyspectraofthreeX-raybinaries.TheneutronstarinGX354-0(4U1728-34)isshownintwospectralstates–low/hardandhigh/soft.Eveninthehardstatetheneutron-starspectraaremuchsofterthanthespectrumofCygX-1(accretingblackhole).AdaptedfromRevnivtsev&Sunyaev(2000).
spectraofthesehottailsfromneutronstarsaremuchsteeperthaninthecaseofblackholesandcontainasmallerfractionofthesourceluminosity.Itseemsthatnowweknowthereason.Inthecaseofblack-holeaccretionweonlyseetheradiationofaccretiondisk–plus,maybe,thecoronaaboveit(Galeevetal.1979)ortheadvectionflowwithevensmalleraccretioneffi-ciency(Narayan&Yi1995).Inthecaseofneutronstarswehaveanobjectwithasolidsurface.Therefore,partofthegravitationalenergyoftheac-cretingmattermustbereleasedinanextendedaccretiondisk,andanother
116RashidSunyaev
partinthenarrowboundarylayerinthevicinityoftheneutronstarwhereaccretingmatterisdeceleratingfromtheKeplerianvelocity(oftheorderofhalfthevelocityoflight)tothevelocityofrotationattheequatoroftheneutronstar.Thesurfaceofthestarisabletoproduceenoughsoftprotonsforcomptonizationtocooldownthehotpartsofthediskandboundarylayertotemperaturesbelow20keV(Sunyaev&Titarchuk19).Thephysicsoftheboundarylayerpermitsustoexplainthestrongdifferencesbetweentheradiationspectraofaccretingblackholesandneutronstars.ItalsopredictsastrongdifferenceinthecharacteristicvariabilitytimescalesoftheX-rayfluxfromblackholesandneutronstars(seebelow).
2
EfficiencyofAccretionontoaRapidlyRotatingNeutronStar
Therecentdiscoveryofquasi-periodicoscillations(QPO)withfrequenciesoftheorderof500-600Hzduringthenuclearburstsonthesurfaceofaneutronstarappearstobeverystrongevidenceofneutron-starrotationwiththesamefrequency,orwithperiodsoftheorderof1.6-2ms(Strohmayeretal.1998).Thisinterpretationisnaturalforanuclearburningfrontpropagatingonthesurfaceofarapidlyrotatingneutronstar.AbrightfrontregionmanifestsitselfasahotspotgivingrisetotheQPO.ItisimportantthatforagivenneutronstartheQPOfrequencyremainsthesamefrombursttoburst.
Theefficiencyofaccretionontoneutronstarsishigher(usually)thantheefficiencyofaccretionontoblackholes.Thereasonisobvious:inthecaseofablackholewehaveaneventhorizonandaneffectiveenergyreleaseandthereleaseoftheobservedradiationfluxmightoccuronlyintheaccretionflowwellbeyondtheeventhorizon.Inthecaseofaneutronstarwithoutastrongmagneticfieldpartoftheenergyisreleasedintheextendedaccretiondiskandanotherpartisliberatedinthenarrowboundarylayernearthesurfaceoftheneutronstar.InNewtonianmechanicsenergyreleaseintheboundarylayerisequalto
f1
(1−Ls=
R∗
˙GMM2
thecyclic
keplerianfrequencyneartheitssurface,fisthefrequencyofstellarrotation
˙istheaccretionrate.andM
TheproblembecomesmuchmorecomplicatedinthecaseofGeneralRel-ativity.Kerrmetricsisnotapplicabletothecaseofrapidlyrotatingneutron
2π
R3∗
AccretionontoBlackHolesandNeutronStars117
starbecausethemassdistributionwithinthestarisnolongersphericallysymmetric.Thereisastrongquadrupolecomponentinthemassdistribu-tion.Fortunately,thereisanexactsolutionoftheGRequationsforthecasewhenthemassdistributionhasaquadrupolecomponent.Usingthissolution,Sibgatullin&Sunyaev(2000)plottedthedependenceoftheenergyreleaseduetotheaccretionontoaneutronstarasafunctionoftherotationfre-quencyofthatstar(Fig.3).TheexistingGRsolutionpermitsustofindtheefficiencyoftheenergyreleaseonlyinthecasewhenthespindirectionsoftheneutronstarandaccretiondiskareparalleloranti-parallel.Unfortu-nately,theproblemwithanarbitraryanglebetweentheaxesofrotationoftheneutronstarandtheaccretiondiskismuchmorecomplicated.InFig-ure3thepositivevaluesoftherotationalfrequencyfcorrespondtothecaseofcorotationandnegativevaluesdescribethecaseofcounterrotation.Thefigurepresentsthecomputationsfortheequationofstate(EOS)FPSintheclassificationofLorenzetal.(1993)foragravitationalmassoftheneutronstarM=1.4M⊙.
Fig.3.Efficiencyoftheenergyreleaseinthedisk(Ld)andonthestellarsurface(Ls)asafunctionofthestellarrotationfrequencyf.Negativefvaluescorrespondtothecaseofcounterrotationofdiskandstar.Thesolidlineandthenumbers
˙2.Thedashedlineandthevaluesonontheleftaxisgivethevalue(Ls+Ld)/Mc
therightaxisgivetheratioLd/Ls.Agapbetweenthemarginallystableorbitandthestellarsurfaceexistsintheregionleftsideofthetwoasterisksonthesolidanddashedcurves.Thereisnosuchgapinthecaseofrapidcorotationofstaranddisk(f>550Hz).AdaptedfromSibgatullin&Sunyaev(2000).
118RashidSunyaev
Weseethattheenergyreleaseefficiencydropsrapidlywithincreasingfrequencyinthecaseofcorotationandincreasesrapidlytowardshighfre-quenciesofcounterrotation.Theratioofthediskluminositytotheluminosityintheboundarylayerorinthespreadinglayernearthesurfaceofthestaralsostronglydependsonthefrequencyofrotation.Itiscloseto1forthecaseofcorotationwithf=600Hzanddecreasesupto0.2inthecaseofcounterrotationwiththesamefrequency.
TheasterisksinFigure3giveinformationontheexistenceofagapbetweenthemarginallystableorbitintheaccretiondiskandtheradiusofthestar.Forfrequenciesofcorotationhigherthan550Hzsuchagapdoesnotexist;thenthediskisincontactwiththesurfaceoftheneu-tronstar.ForlowerfrequenciesofcorotationandinthecaseofcounterrotationfortheEOSFPSandM=1.4M⊙thereisagapRm−R∗≈[1.44−3.06(f/kHz)+0.843(f/kHz)2+0.6(f/kHz)3−0.22(f/kHz)4]km.Inthemostinterestingcaseofcorotationthegapisverynarrowandthethick-nessoftheboundarylayerorthehightofthespreadinglayerusuallyexceedsthedimensionofthegap.However,inthecaseofcounterrotation(negativevaluesoff)thegapcouldbesufficientlylargethatithastobetakenintoaccount.
Theenergyreleaseefficiencyduetoaccretionontoacounter-rotating
˙c2forthecaseofaneutronstarmayreachverylargevaluesupto0.67M
neutronstarwithbaryonicmassm=2.1M⊙forf=1.5kHzandtheEOSFPS.Obviously,suchahighenergyreleaseefficiencyisconnectedwiththespindownoftherapidly(counter)rotatingstar.ThisefficiencyismuchhigherthanthatofdiskaccretionontoaKerrblackhole.Inthecaseofcorotationtheenergyreleaseefficiency,duetoaccretionontoaKerrblackhole,ishigherthaninthecaseofcounterrotation.Thisisreversedinthecaseofaccretionontoaneutronstar.
3StructureoftheBoundaryLayer
Theproblemofdiskaccretionontoaneutronstarwithoutamagneticfieldistwo-dimensional.Theheightofanaccretiondiskatlowaccretionratesandluminosities(0.01 radiusoftheneutronstar.HereandbelowLEdd= AccretionontoBlackHolesandNeutronStars119 accretiondiskorwecouldconsiderthemotionofmatterinthespreadinglayerasbelongingtothesurfaceoftheneutronstar.Wetriedtoinvestigatebothoftheseapproachesinone-dimensionalapproximations.InthepaperbyPopham&Sunyaev(2000)wecomputedthestructureandpropertiesoftheboundarylayerconsideringitasapartofthedisk.Figure4showshowtheheightoftheboundarylayerdependsonthedistancefromthestellarsurfacefordifferentaccretionrates.InthecaseofalowaccretionrateorL∼0.01LEdd,theheightofthediskinthe“neck”betweentheaccretiondiskandtheboundarylayerisclosetoonly40metersandtheextensionoftheboundarylayerabout1.5km.ThesituationdrasticallychangeswhenwegotothecaseofhighaccretionrateswithaluminosityclosetothecriticalEddingtonluminosity.Theheightoftheneckbetweentheboundarylayerandtheaccretiondiskinthiscaseexceeds2kmandtheboundarylayerextendsupto2neutron-starradii. Fig.4.TheverticalpressurescaleheightH(top)andtheangularvelocityΩ(bot-˙=10−10(longdash),10−9(solid)and10−8M⊙yr−1tom),forsolutionswithM ˙=10−9M⊙yr−1anda(dotted),allforanon-rotatingneutronstar,andforM neutronstarrotationfrequencyf∗=636Hz(dashed),allwithstandardviscosityandα=0.1.NotetheverysmallvaluesofHatthe“neck”betweenthediskand ˙solutions,andtherapidincreaseinHinthetheboundarylayerinthelowerM boundarylayer.AdaptedfromPopham&Sunyaev(2000). 120RashidSunyaev AmorenaturalapproachwasconsideredbyInogamov&Sunyaev(1999).Thisapproachusestheshallowwaterorhydraulicapproximation.Itassumesthatthethicknessofthespreadinglayeronthesurfaceoftheneutronstarislessthanthecircumferenceoftheneutron-starequatorH<<2πR∗.Thisapproachassumesthatmatterenteringtheequatorialringwithaveryhighrotationalvelocityoftheorderof0.5c,wherecisthevelocityoflight.Thenthematterbeginstospiralslowlytowardsthepoleslosingitskineticrotationenergyduetoturbulentfrictionwiththedenseunderlyinglayer(Fig.5andFig.6). Fig.5.Rotationofmatterinthediskandonthestellarsurfaceinthespreadinglayermodel;Sisthestellarsurface,Pisthepole,andeistheequator. Fig.6.Spreadingoftherotatingplasmafromthedisk,D,overtheneutronstarsurface,S.Here,Iistheintermediatezonenearthediskneck,θ∗correspondstothepositionofthehotbelt,andθ>θ∗isthecoldpartofthespreadinglayer.Therotationvelocityvφ(filledcircle)isdirectedalongthenormaltotheplaneofthefigure.Theslowlycirculatingdenseunderlyinglayersofmatterbeneaththespreadinglayerareindicatedbythedashes.BothfiguresareadaptedfromInogamov&Sunyaev(1999). Thethicknessofthespreadinglayerishighestinthevicinityoftheequatoranddecreasestowardsthepoles.Thismeansthatmatterismovingdownthehillundertheinfluenceofgravity,thecentrifugalforceandthelightpressureforce.Theproblemisextremelyinteresting.Wearedealingwithradiationdominatedplasmawhentheradiationpressurestronglyexceedsthematterpressure.Thesoundspeediscloseto0.1−0.15c.Radiativeviscosityisalsomuchstrongerthantheviscosityofplasma.Thesolutionofthesetofhydrodynamicequationsresultsinthefollowingpicture(seeInogamov&Sunyaev1999fordetails).Twobrightbeltsequidistantfromtheequator AccretionontoBlackHolesandNeutronStars121 appearonthesurfaceoftheneutronstarduetodiskaccretion.Figure7givesthedistanceofthebrightbeltsfromtheequatorfor4luminositiesoftheneutronstar:0.01,0.04,0.20and0.80LEdd.Thedistancefromtheequatorincreaseswithluminosity. Fig.7.Dependenceofthesurfacebrightnessasafunctionofdistancefromtheequator.Labels1,2,3and4refertoLSL/LEdd=0.01,0.04,0.2,and0.8,respec-tively;qoisthecriticalEddingtonflux.AdaptedfromInogamov&andSunyaev(1999). Theenergyreleaseinthevicinityoftheequatorisverylowbecausetherecentrifugalforcescompensategravitywithhighprecision.Therefore,anysub-stantialradiationfluxcoulddestroythestructureofthethinspreadinglayer.Fortunately,advectiontakestheradiationenergydensityandtransportsittothebrightbeltsaboveandbelowtheequator(Fig.8). Inthesebrightbeltstherotationalvelocityofthespreadingmatterbe-comeslowenoughtopermittheexistenceofalargeradiationfluxcomparable mc3222W tothecriticalEddingtonfluxq0=p R∗)=10 122RashidSunyaev Fig.8.Thedynamicsofthespreadinglayerisdeterminedinmanywaysbythehydrodynamictransferofradiativeenergy.Theratiooftheenergyflux,q,emittedperunitareaoftheradiatinglayertothefrictionalenergyreleaseQ+perunitareaofthecontactsurfacebetweenthespreadinglayerandthestar.TheenergyistransferredfromzoneAintozoneBthroughmeridionaladvection.ThiscalculationisforLSL/LEdd=0.2. Fig.9.Columndensityofmatterinthespreadinglayerasafunctionofthedistancefromtheequator.AstrongincreaseofΣoccurswhentheflowcoolsdownandbeginstomoveveryslowly.BrightbeltscorrespondtotheregionsofminimalΣ.Labels1,2,3and4refertoLSL/LEdd=0.01,0.04,0.2and0.8,respectively.BothfiguresareadaptedfromInogamov&Sunyaev(1999). Thematterinthespreadinglayerispracticallylevitating.Thedifferencebetweenthegravitationalforceandthecentrifugal-andradiationpressureforceiscloseto(1−3)×10−3ofgravity.Athigherlongitudestherotationalvelocityofmatterandthevelocityoftheflowalongthemeridiandecreasesandtheflowbecomessubsonic,cool,denseandveryslow. Oneofthemostinterestingpredictionsofthetheoryofthespreadinglayeristhestrongdependenceofthemattercolumndensityinthespread-inglayerontheaccretionrateortheluminosityoftheneutronstar(seeFig.9).InthecaseofalowluminositythelevitatinglayerinthebrightbeltsisopticallythinagainstThompsonscatteringτT∼2.Underthesecircum-stancesitisimpossibletoradiatetheenergyreleasedduetoaccretionatlowtemperatures.Comptonizationformshardtails.Inthecaseofahighlumi-nositythebrightbelthasalargecolumndensity(upto10kg/cm2).Thenfree-freeprocessesandcomptonizationformBose-Einsteintypespectrain-sidethespreadinglayerandtheresultingspectrumismuchsofterthaninthecaseoflowluminosity. AccretionontoBlackHolesandNeutronStars123 4 TimeVariabilityintheAccretionDiskandintheBoundaryLayer Allinstabilitiesexistingintheaccretiondiskmodulatetheflowofmatterontotheneutron-starsurface.Therefore,wecouldexpectthatthemajorityofthetypesofvariabilityweobserveinaccretingblackholesmustmanifestthemselvesinaccretingneutronstarswithcharacteristictimescalespropor-tionaltothemassoftheaccretingobject(seee.g.Shakura&Sunyaev1976,Wijnands&vanderKlis1999).Thespreadinglayeronthesurfaceoftheneutronstaristhesourceofadditionalhigh-frequencyinstabilities(seethediscussioninSunyaev&Revnivtsev2000).Theiroriginisobvious–themat-terinthebrightbeltsisradiationdominated,levitating,theheightissmallerthanintheregionofthemainenergyreleaseintheaccretiondisk,thesoundvelocityishugeandcorrespondingsoundfrequenciesareveryhigh. Fig.10.Comparisonofthepowerspectraofablackhole(CygX-1)andaneu-tronstar(Terzan2).ThedashedlineshowsthepowerspectrumofCygX-1scaled scaled accordingtothemassratiowithTerzan2(fCygX−1×7→fCygX−1.Thissim-plescalingisimportantbutinsufficienttoexplainfullythedifferenceinthehighfrequencyvariabilityofTerzan‘2andCygX-1.NotethattheslopesofthepowerdensityspectraofTerzan2andCygX-1inthehighandlowfrequencylimitsaresimilar,butthatthepowerspectrumofTerzan2issignificantlybroaderthanthatofCygX-1.AdaptedfromSunyaev&Revnivtsev(2000). Sunyaev&Revnivtsev(2000)comparedthepowerdensityspectraof9blackholesand9neutronstarsobservedbyRXTEintheirlow/hardstate. 124RashidSunyaev Thereisaverystrongdifference.InthepowerdensityspectraofaccretingneutronstarswithaweakmagneticfieldsignificantpoweriscontainedatfrequenciesclosetoonekHz.Atthesametime,mostGalacticaccretingblackholesdemonstrateastrongdeclineinthepowerspectraatthefrequencieshigherthan10-50Hz.InprinciplethismightopenanadditionalwaytodistinguishtheaccretingneutronstarsfromblackholesinX-raytransients(wedonotmentioninthispaperthewell-knowndifferences:X-rayburstsorX-raypulsations).Fig.10comparesthepowerdensityspectrumofCygX-1withthepowerdensityspectrumoftheX-raybursterinTerzan2. ThesimplestassumptionisthatthecharacteristicfrequenciesinthepowerspectraofthesourcesscaleasM−1(Shakura&Sunyaev1976).Thisscalinglawisvalidfore.g.thekeplerianfrequencyinthevicinityofthemarginallystableorbit,thethermalandsecularinstabilitiesoftheaccretiondiskintheregionofmainenergyrelease,andtheBalbus-Hawleyinstability.However,thisassumptiondoesnotaccountfortheobserveddifferenceinthehighfrequencyvariabilitybetweenneutronstarsandblackholes. References 1.BoltonC.T.(1972)Nature235,271 2.Budil,K.S.,Gold,D.M.,Estabrook,K.G.,Remington,B.A.,Kane,J.,Bell,P.M.,Pennington,D.M.,Brown,C.,Hatchett,S.P.,Koch,J.A.,Key,M.H.andPerry,M.D.(2000)ApJSuppl127,261-265 3.Galeev,A.,Rosner,R.,Vaiana,G.(1979)ApJ,229,318 4.Gilfanov,M.,Churazov,E.,Revnivtsev,M.(2000)MNRAS316,9235.Inogamov,N.,Sunyaev,R.,(1999)Astr.Letts25,269,astro-ph9904333 6.Lorenz,C.P.,Ravenhall,D.G.,Pethick,C.J.(1993)Phys.Rev.Lett.70,3797.Lyuty,V.,Sunyaev,R.,Cherepashchuk,A.(1973)SovietAstronomy50,38.Narayan,R.,Yi,I.(1995)ApJ452,7109.Perry,M.D.(1996)Sci.Tech.Rev.12,4 10.Popham,R.,Sunyaev,R.(2000)ApJ(inpress),astro-ph000401711.Sibgatullin,N.,Sunyaev,R.(2000)Astr.Letts26,inpress12.ShakuraN.,Sunyaev,R.(1973)Astron.Astrophys.24,33713.ShakuraN.,Sunyaev,R.(1976)MNRAS175,613 14.Strohmayer,T.,Zhank,J.H.,White,N.E.,Lapidus,I.(1998)Astrophys.J. 498,1358 15.Sunyaev,R.,Revnivtsev,M.(2000)AstronomyandAstrophysics358,61716.Sunyaev,R.,Titarchuk,L.(1980)Astron.Astrophys86,121 17.Sunyaev,R.,Titarchuk,L.(19)Proceedingsofthe23rdESLABSymposium 1,627 18.Sunyaev,R,Tr¨umper,J.(1979)Nature279,50619.Tanaka,Y.,Shibazaki,N.(1996)ARA&A34,607 20.Tananbaum,H.,Gursky,H.,Giacconi,R.,Jones,C.(1972)ApJ177,L521.Wijands,R.,vanderKlis,M.(1999)ApJ514,939
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- huatuo0.cn 版权所有 湘ICP备2023017654号-2
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务