您好,欢迎来到华佗小知识。
搜索
您的当前位置:首页2014届步步高大一轮复习讲义二.2.4

2014届步步高大一轮复习讲义二.2.4

来源:华佗小知识


§2.4 二次函数与幂函数

2014高考会这样考 1.求二次函数的解析式;2.求二次函数的值域或最值,考查和一元二次方程、一元二次不等式的综合应用;3.利用幂函数的图像、性质解决有关问题.

复习备考要这样做 1.理解二次函数三种解析式的特征及应用;2.分析二次函数要抓住几个关键环节:开口方向、对称轴、顶点、函数的定义域;3.充分应用数形结合思想把握二次函数、幂函数的性质.

1. 二次函数的定义与解析式

(1)二次函数的定义

形如:f(x)=ax2+bx+c_(a≠0)的函数叫作二次函数. (2)二次函数解析式的三种形式 ①一般式:f(x)=ax2+bx+c_(a≠0). ②顶点式:f(x)=a(x-m)2+n(a≠0). ③零点式:f(x)=a(x-x1)(x-x2)_(a≠0). 2. 二次函数的图像和性质

解析式 f(x)=ax2+bx+c (a>0) f(x)=ax2+bx+c (a<0) 图像 定义域 值域 (-∞,+∞) (-∞,+∞) 4ac-b,+∞ 4a2-∞,4ac-b 4a2单调性 bb-∞,-上单调递减; 在x∈-∞,-上单调递增; 在x∈2a2ab-,+∞上单调递增 在x∈2ab-,+∞上单调递减 在x∈2a奇偶性 顶点 当b=0时为偶函数,b≠0时为非奇非偶函数 -b,4ac-b 4a2a2

对称性 3. 幂函数 b图像关于直线x=-成轴对称图形 2a形如y=xα (α∈R)的函数称为幂函数,其中x是自变量,α是常数. 4. 幂函数的图像及性质

(1)幂函数的图像比较

(2)幂函数的性质比较

y=x 定义域 R R R [0,+∞) {x|x∈R且x≠0} {y|y∈R且y≠0} 奇函数 x∈(0,+∞) 增 增 时,减;x∈(-∞,0)时,减 y=x2 y=x3 1y=x 2y=x1 -值域 R [0,+∞) R [0,+∞) 非奇非偶函数 奇偶性 奇函数 偶函数 x∈[0,+∞)奇函数 单调性 增 时,增;x∈(-∞,0]时,减 [难点正本 疑点清源] 1. 二次函数的三种形式

(1)已知三个点的坐标时,宜用一般式.

(2)已知二次函数的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. (3)已知二次函数与x轴有两个交点,且横坐标已知时,选用零点式求f(x)更方便. 2. 幂函数的图像

(1)在(0,1)上,幂函数中指数越大,函数图像越靠近x轴,在(1,+∞)上幂函数中指数越大,函数图像越远离x轴.

1-

(2)函数y=x,y=x2,y=x3,y=x,y=x1可作为研究和学习幂函数图像和性质的代表.

2

1. 已知函数f(x)=x2+2(a-1)x+2在区间(-∞,3]上是减函数,则实数a的取值范围为

____________. 答案 (-∞,-2]

解析 f(x)的图像的对称轴为x=1-a且开口向上, ∴1-a≥3,即a≤-2.

2. (课本改编题)已知函数y=x2-2x+3在闭区间[0,m]上有最大值3,最小值2,则m的

取值范围为________. 答案 [1,2]

解析 y=x2-2x+3的对称轴为x=1. 当m<1时,y=f(x)在[0,m]上为减函数. ∴ymax=f(0)=3,ymin=f(m)=m2-2m+3=2. ∴m=1,无解.

当1≤m≤2时,ymin=f(1)=12-2×1+3=2, ymax=f(0)=3.

当m>2时,ymax=f(m)=m2-2m+3=3, ∴m=0,m=2,无解.∴1≤m≤2.

3. 若幂函数y=(m2-3m+3)xm2-m-2的图像不经过原点,则实数m的值为________.

答案 1或2

m2-3m+3=1

解析 由2,解得m=1或2.

m-m-2≤0

经检验m=1或2都适合.

4. (人教A版教材例题改编)如图中曲线是幂函数y=xn在第一象限的图

1

像.已知n取±2,±四个值,则相应于曲线C1,C2,C3,C4的n值依

2次为____________. 11

答案 2,,-,-2

22

解析 可以根据函数图像是否过原点判断n的符号,然后根据函数凸凹性确定n的值. 5. 函数f(x)=x2+mx+1的图像关于直线x=1对称的充要条件是

A.m=-2 C.m=-1 答案 A

B.m=2

( )

D.m=1

mm

解析 函数f(x)=x2+mx+1的图像的对称轴为x=-,且只有一条对称轴,所以-=22

1,即m=-2.

题型一 求二次函数的解析式

例1 已知二次函数f(x)满足f(2)=-1,f(-1)=-1,且f(x)的最大值是8,试确定此二次函

数.

思维启迪:确定二次函数采用待定系数法,有三种形式,可根据条件灵活运用. 解 方法一 设f(x)=ax2+bx+c (a≠0),

a-b+c=-1,

依题意有

4ac-b4a=8,

2

4a+2b+c=-1,

a=-4,

解之,得b=4,

c=7,

∴所求二次函数解析式为f(x)=-4x2+4x+7. 方法二 设f(x)=a(x-m)2+n,a≠0.∵f(2)=f(-1), 2+-111

∴抛物线对称轴为x==.∴m=. 222又根据题意函数有最大值为n=8, 1

x-2+8. ∴y=f(x)=a21

2-2+8=-1,解之,得a=-4. ∵f(2)=-1,∴a21

x-2+8=-4x2+4x+7. ∴f(x)=-42方法三 依题意知,f(x)+1=0的两根为

x1=2,x2=-1,故可设f(x)+1=a(x-2)(x+1),a≠0. 即f(x)=ax2-ax-2a-1.

4a-2a-1-a2

又函数有最大值ymax=8,即=8,

4a解之,得a=-4或a=0(舍去). ∴函数解析式为f(x)=-4x2+4x+7.

探究提高 二次函数有三种形式的解析式,要根据具体情况选用:如和对称性、最值有关,可选用顶点式;和二次函数的零点有关,可选用零点式;一般式可作为二次函数的最终结果.

已知二次函数f(x)同时满足条件:

(1)f(1+x)=f(1-x); (2)f(x)的最大值为15; (3)f(x)=0的两根平方和等于17. 求f(x)的解析式.

解 依条件,设f(x)=a(x-1)2+15 (a<0), 即f(x)=ax2-2ax+a+15.

令f(x)=0,即ax2-2ax+a+15=0, 15

∴x1+x2=2,x1x2=1+.

a

22

x21+x2=(x1+x2)-2x1x2

1530

1+=2-=17, =4-2aa∴a=-2,∴f(x)=-2x2+4x+13. 题型二 二次函数的图像与性质

例2 已知函数f(x)=x2+2ax+3,x∈[-4,6].

(1)当a=-2时,求f(x)的最值;

(2)求实数a的取值范围,使y=f(x)在区间[-4,6]上是单调函数; (3)当a=1时,求f(|x|)的单调区间.

思维启迪:对于(1)和(2)可根据对称轴与区间的关系直接求解,对于(3),应先将函数化为分段函数,再求单调区间,注意函数定义域的作用.

解 (1)当a=-2时,f(x)=x2-4x+3=(x-2)2-1,由于x∈[-4,6], ∴f(x)在[-4,2]上单调递减,在[2,6]上单调递增,

∴f(x)的最小值是f(2)=-1,又f(-4)=35,f(6)=15,故f(x)的最大值是35.

(2)由于函数f(x)的图像开口向上,对称轴是x=-a,所以要使f(x)在[-4,6]上是单调函数,应有-a≤-4或-a≥6,即a≤-6或a≥4. (3)当a=1时,f(x)=x2+2x+3,

∴f(|x|)=x2+2|x|+3,此时定义域为x∈[-6,6],

2x+2x+3,x∈0,6]

且f(x)=2,

x-2x+3,x∈[-6,0]

∴f(|x|)的单调递增区间是(0,6], 单调递减区间是[-6,0].

探究提高 (1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键是考查对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论;(2)二次函数的单调性问题则主要依据二次函数图像的对称轴进行分析讨论求解.

若函数f(x)=2x2+mx-1在区间[-1,+∞)上递增,则f(-1)的取值范围是____________. 答案 (-∞,-3]

m

解析 ∵抛物线开口向上,对称轴为x=-,

4m

∴-≤-1,∴m≥4.

4

又f(-1)=1-m≤-3,∴f(-1)∈(-∞,-3]. 题型三 二次函数的综合应用

例3 若二次函数f(x)=ax2+bx+c (a≠0)满足f(x+1)-f(x)=2x,且f(0)=1.

(1)求f(x)的解析式;

(2)若在区间[-1,1]上,不等式f(x)>2x+m恒成立,求实数m的取值范围.

思维启迪:对于(1),由f(0)=1可得c,利用f(x+1)-f(x)=2x恒成立,可求出a,b,进而确定f(x)的解析式.对于(2),可利用函数思想求得. 解 (1)由f(0)=1,得c=1.∴f(x)=ax2+bx+1. 又f(x+1)-f(x)=2x,

∴a(x+1)2+b(x+1)+1-(ax2+bx+1)=2x,

2a=2,a=1,

即2ax+a+b=2x,∴∴

a+b=0,b=-1.

因此,f(x)=x2-x+1.

(2)f(x)>2x+m等价于x2-x+1>2x+m,即x2-3x+1-m>0,要使此不等式在[-1,1]上恒成立,只需使函数g(x)=x2-3x+1-m在[-1,1]上的最小值大于0即可. ∵g(x)=x2-3x+1-m在[-1,1]上单调递减, ∴g(x)min=g(1)=-m-1,由-m-1>0得,m<-1. 因此满足条件的实数m的取值范围是(-∞,-1).

探究提高 二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,而二次函数又是“三个二次”的核心,通过二次函数的图像贯穿为一体.因此,有关二次函数的问题,数形结合,密切联系图像是探求解题思路的有效方法.用函数思想研究方程、不等式(尤其是恒成立)问题是高考命题的热点.

已知函数f(x)=x2+mx+n的图像过点(1,3),且f(-1+x)=f(-1-x)对任意实数都成立,函数y=g(x)与y=f(x)的图像关于原点对称. (1)求f(x)与g(x)的解析式;

(2)若F(x)=g(x)-λf(x)在(-1,1]上是增函数,求实数λ的取值范围. 解 (1)∵f(x)=x2+mx+n,

∴f(-1+x)=(-1+x)2+m(-1+x)+n =x2-2x+1+mx+n-m =x2+(m-2)x+n-m+1, f(-1-x)=(-1-x)2+m(-1-x)+n =x2+2x+1-mx-m+n =x2+(2-m)x+n-m+1.

又f(-1+x)=f(-1-x),∴m-2=2-m,即m=2. 又f(x)的图像过点(1,3), ∴3=12+m+n,即m+n=2, ∴n=0,∴f(x)=x2+2x,

又y=g(x)与y=f(x)的图像关于原点对称, ∴-g(x)=(-x)2+2×(-x), ∴g(x)=-x2+2x.

(2)∵F(x)=g(x)-λf(x)=-(1+λ)x2+(2-2λ)x, 2-2λ1-λ

当λ+1≠0时,F(x)的对称轴为x==,

21+λλ+1又∵F(x)在(-1,1]上是增函数. 1+λ<01+λ>0∴1-λ或1-λ.

≤-1≥11+λ1+λ∴λ<-1或-1<λ≤0.

当λ+1=0,即λ=-1时,F(x)=4x显然在(-1,1]上是增函数. 综上所述,λ的取值范围为(-∞,0]. 题型四 幂函数的图像和性质

例4 已知幂函数f(x)=xm2-2m-3 (m∈N*)的图像关于y轴对称,且在(0,+∞)上是减函

mm

数,求满足(a+1)-<(3-2a)-的a的取值范围.

33

思维启迪:由幂函数的性质可得到幂指数m2-2m-3<0,再结合m是整数,及幂函数是偶函数可得m的值.

解 ∵函数在(0,+∞)上递减, ∴m2-2m-3<0,解得-1又函数的图像关于y轴对称,∴m2-2m-3是偶数, 而22-2×2-3=-3为奇数,12-2×1-3=-4为偶数,

1

∴m=1.而f(x)=x-在(-∞,0),(0,+∞)上均为减函数,

3

11

∴(a+1)-<(3-2a)-等价于a+1>3-2a>0或0>a+1>3-2a或a+1<0<3-2a.

3323

解得a<-1或23

故a的取值范围为a|a<-1或3

探究提高 (1)幂函数解析式一定要设为y=xα (α为常数的形式);(2)可以借助幂函数的图像理解函数的对称性、单调性.

已知幂函数f(x)=x(m2+m)1(m∈N*)

(1)试确定该函数的定义域,并指明该函数在其定义域上的单调性;

(2)若该函数还经过点(2,2),试确定m的值,并求满足条件f(2-a)>f(a-1)的实数a的取值范围.

解 (1)m2+m=m(m+1),m∈N*,

而m与m+1中必有一个为偶数,∴m(m+1)为偶数.

∴函数f(x)=x(m2+m)1(m∈N*)的定义域为[0,+∞),并且在定义域上为增函数.

(2)∵函数f(x)经过点(2,2),

1--

∴2=2(m2+m)1,即2=2(m2+m)1.

2∴m2+m=2.解得m=1或m=-2. 又∵m∈N*,∴m=1.

2-a≥0,

由f(2-a)>f(a-1)得a-1≥0

2-a>a-1.3

解得1≤a<.

2

3

∴a的取值范围为[1,).

2

分类讨论思想在二次函数中的应用

典例:(14分)设a为实数,函数f(x)=2x2+(x-a)|x-a|.

(1)若f(0)≥1,求a的取值范围; (2)求f(x)的最小值;

(3)设函数h(x)=f(x),x∈(a,+∞),直接写出(不需给出演算步骤)不等式h(x)≥1的解集.

审题视角 (1)求a的取值范围,是寻求关于a的不等式,解不等式即可;(2)求f(x)的最小值,由于f(x)可化为分段函数,分段函数的最值分段求,然后综合在一起;(3)对a讨论时,要找到恰当的分类标准. 规范解答

解 (1)因为f(0)=-a|-a|≥1,所以-a>0, 即a<0,由a2≥1知a≤-1,

因此,a的取值范围为(-∞,-1].[3分] (2)记f(x)的最小值为g(a),则有 f(x)=2x2+(x-a)|x-a|

a2ax-2+,x>a ①33=3[5分] 22x+a-2a,x≤a ②(ⅰ)当a≥0时,f(-a)=-2a2,

由①②知f(x)≥-2a2,此时g(a)=-2a2.[7分] a22

(ⅱ)当a<0时,f3=3a, 2若x>a,则由①知f(x)≥a2.

3

22

若x≤a,由②知f(x)≥2a2>a2.此时g(a)=a2,

33-2a,a≥02

综上,得g(a)=2a.[10分]

,a<03(3)(ⅰ)当a∈-∞,-2

2

62∪,+∞时,解集为(a,+∞);

22

22a+3-2a2; (ⅱ)当a∈-,时,解集为,+∞223(ⅲ)当a∈-

62

时,解集为 ,-

22

a-3-2a2a+3-2a2

a,∪,+∞.[14分]

33

温馨提醒 分类讨论的思想是高考重点考查的数学思想方法之一.本题充分体现了分类讨论的思想方法.

在解答本题时有两点容易造成失分:

一是求实数a的值时,讨论的过程中没注意a自身的取值范围,易出错;二是求函数最值时,分类讨论的结果不能写在一起,不能得出最后的结论. 除此外,解决函数问题时,以下几点容易造成失分:

1.含绝对值的问题,去绝对值符号,易出现计算错误;

2.分段函数求最值时要分段求,最后写在一起时,没有比较大小或不会比较大小; 3.解一元二次不等式时,不能与一元二次函数、一元二次方程联系,思路受阻.

方法与技巧

1. 二次函数、二次方程、二次不等式间相互转化的一般规律:

(1)在研究一元二次方程根的分布问题时,常借助于二次函数的图像数形结合来解,一般从①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析. (2)在研究一元二次不等式的有关问题时,一般需借助于二次函数的图像、性质求解. 2. 与二次函数有关的不等式恒成立问题

a>0

(1)ax2+bx+c>0,a≠0恒成立的充要条件是2.

b-4ac<0a<0

(2)ax+bx+c<0,a≠0恒成立的充要条件是2.

b-4ac<0

2

3. 幂函数y=xα(α∈R),其中α为常数,其本质特征是以幂的底x为自变量,指数α为常数. 失误与防范

1. 对于函数y=ax2+bx+c,要认为它是二次函数,就必须满足a≠0,当题目条件中未说

明a≠0时,就要讨论a=0和a≠0两种情况.

2. 幂函数的图像一定会出现在第一象限内,一定不会出现在第四象限,至于是否出现在第

二、三象限内,要看函数的奇偶性;幂函数的图像最多只能同时出现在两个象限内;如果幂函数图像与坐标轴相交,则交点一定是原点.

A组 专项基础训练 (时间:35分钟,满分:57分)

一、选择题(每小题5分,共20分)

-x, x≤0,1. (2011·浙江)设函数f(x)=2若f(α)=4,则实数α等于

x, x>0,

( )

A.-4或-2 C.-2或4 答案 B

B.-4或2 D.-2或2

解析 当α≤0时,f(α)=-α=4,得α=-4; 当α>0时,f(α)=α2=4,得α=2.∴α=-4或α=2.

2. 已知函数f(x)=x2-2x+2的定义域和值域均为[1,b],则b等于

A.3 答案 C

解析 函数f(x)=x2-2x+2在[1,b]上递增, f1=1,

由已知条件fb=b,

b>1,

B.2或3

C.2

D.1或2

( )

b-3b+2=0,

即解得b=2. b>1.

2

3. 设abc>0,二次函数f(x)=ax2+bx+c的图像可能是

( )

答案 D

解析 由A,C,D知,f(0)=c<0. b

∵abc>0,∴ab<0,∴对称轴x=->0,

2a知A,C错误,D符合要求.

b

由B知f(0)=c>0,∴ab>0,∴x=-<0,B错误.

2a

4. 设二次函数f(x)=ax2-2ax+c在区间[0,1]上单调递减,且f(m)≤f(0),则实数m的取值

范围是

( )

A.(-∞,0] B.[2,+∞) D.[0,2]

C.(-∞,0]∪[2,+∞) 答案 D

解析 二次函数f(x)=ax2-2ax+c在区间[0,1]上单调递减,则a≠0,f′(x)=2a(x-1)<0,x∈[0,1],

所以a>0,即函数图像的开口向上,对称轴是直线x=1. 所以f(0)=f(2),则当f(m)≤f(0)时,有0≤m≤2. 二、填空题(每小题5分,共15分)

5. 二次函数的图像过点(0,1),对称轴为x=2,最小值为-1,则它的解析式为____________.

1

答案 y=(x-2)2-1

2

6. 已知函数f(x)=x2+2(a-1)x+2在区间(-∞,3]上是减函数,则实数a的取值范围为

____________. 答案 (-∞,-2]

解析 f(x)的图像的对称轴为x=1-a且开口向上, ∴1-a≥3,即a≤-2.

1

7. 当α∈-1,2,1,3时,幂函数y=xα的图像不可能经过第________象限.

答案 二、四

1

解析 当α=-1、1、3时,y=xα的图像经过第一、三象限;当α=时,y=xα的图像

2经过第一象限. 三、解答题(共22分)

8. (10分)已知二次函数f(x)的二次项系数为a,且f(x)>-2x的解集为{x|1+6a=0有两相等实根,求f(x)的解析式. 解 设f(x)+2x=a(x-1)(x-3) (a<0), 则f(x)=ax2-4ax+3a-2x, f(x)+6a=ax2-(4a+2)x+9a,

Δ=[-(4a+2)]2-36a2=0,即(5a+1)(a-1)=0, 1

解得a=-或a=1(舍去).

5

1

因此f(x)的解析式为f(x)=-(x-1)(x-3).

5

9. (12分)是否存在实数a,使函数f(x)=x2-2ax+a的定义域为[-1,1]时,值域为[-2,2]?

若存在,求a的值;若不存在,说明理由. 解 f(x)=(x-a)2+a-a2.

当a<-1时,f(x)在[-1,1]上为增函数,

f-1=1+3a=-2,∴⇒a=-1(舍去); f1=1-a=2

2

fa=a-a=-2,

当-1≤a≤0时,⇒a=-1;

f1=1-a=22fa=a-a=-2,

当0f-1=1+3a=2

当a>1时,f(x)在[-1,1]上为减函数,

f-1=1+3a=2,

∴⇒a不存在. f1=1-a=-2

综上可得a=-1.

B组 专项能力提升

(时间:25分钟,满分:43分)

一、选择题(每小题5分,共20分) 1. 已知幂函数f(x)=xα的图像经过点2,

2,则f(4)的值等于 2 ( )

A.16 C.2 答案 D

1B. 161D. 2

解析 将点2,

212

代入得:2α=,所以α=-,

222

1

故f(4)=. 2

2. 已知函数f(x)=2mx2-2(4-m)x+1,g(x)=mx,若对于任一实数x,f(x)与g(x)的值至少

有一个为正数,则实数m的取值范围是 A.(0,2) C.(2,8) 答案 B

4-m

解析 当m≤0时,显然不合题意;当m>0时,f(0)=1>0,①若对称轴≥0,即02m结论显然成立;

4-m

②若对称轴<0,即m>4,只要Δ=4(4-m)2-8m=4(m-8)(m-2)<0即可,即42m综上,03. 已知二次函数y=x2-2ax+1在区间(2,3)内是单调函数,则实数a的取值范围是( )

A.a≤2或a≥3

B.2≤a≤3 D.-3≤a≤-2

B.(0,8) D.(-∞,0)

( )

C.a≤-3或a≥-2 答案 A

解析 由函数图像知,(2,3)在对称轴x=a的左侧或右侧,∴a≥3或a≤2. 二、填空题(每小题5分,共15分)

3

-,49,且方程f(x)=0的两个实根之差等于7,4. 已知二次函数y=f(x)的顶点坐标为2

则此二次函数的解析式是______________. 答案 f(x)=-4x2-12x+40

332x+2+49 (a<0),解析 设二次函数的解析式为f(x)=a方程a(x+)+49=0的两个根22分别为x1,x2,

则|x1-x2|=2-

49=7, a

∴a=-4,故f(x)=-4x2-12x+40.

5. 若方程x2-11x+30+a=0的两根均大于5,则实数a的取值范围是________.

1

答案 04

解析 令f(x)=x2-11x+30+a,结合图像有

f5>0图像与x轴交点在x=5的右侧,11无需考虑对称轴,因为对称轴方程x=>5.2

1∴04

1

6. 已知函数f(x)=x,给出下列命题:

2

Δ≥0图像与x轴有交点,

①若x>1,则f(x)>1;②若0x2-x1;③若022. 则所有正确命题的序号是________. 答案 ①④

1

解析 对于①,f(x)=x是增函数,f(1)=1,

2当x>1时,f(x)>1,①正确;

fx2-fx1

对于②,>1,可举例(1,1),(4,2),故②错;

x2-x1

fx1-0fx2-0

对于③,<,说明图像上两点x1,x2到原点连线的斜率越来越大,由图像

x1-0x2-0可知,③错;

fx1+fx2x1+x2

对于④,22,根据图像可判断出④正确. 三、解答题

7. (13分)已知函数f(x)=-x2+2ax+1-a在x∈[0,1]时有最大值2,求a的值.

解 f(x)=-(x-a)2+a2-a+1, 当a≥1时,ymax=f(1)=a; 当0a≥1,0根据已知条件:或2或

a=2a-a+1=21-a=2,

解得a=2或a=-1.

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- huatuo0.cn 版权所有 湘ICP备2023017654号-2

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务