A(MNLTEXstylefilev2.2)
Steepenedinnerdensityprofilesofgroupgalaxiesviainteractions:
AnN-bodyanalysis
BenjaminM.Dobke,LindsayJ.King,MichaelFellhauer
InstituteofAstronomy,UniversityofCambridge,MadingleyRd,CambridgeCB30HA⋆
arXiv:astro-ph/0702741v1 28 Feb 2007Accepted.../Received...
ABSTRACT
WecontinuetoseearangeofvaluesfortheHubbleconstantobtainedfromgravitationallylensedmultipleimagetimedelayswhenassuminganisothermallensdespitearobustvaluefromtheHSTkeyproject(72±8kms−1Mpc−1).Oneexplanationisthatthereisavari-ationinHubbleconstantvaluesduetoafundamentalheterogeneityinlensgalaxiespresentingroups,i.e.centralgalaxieswithahighdarkmattersurfacedensity,andsatellitegalaxieswithapossiblystrippedhalo,lowdarkmattersurfacedensity,andamorecentralconcen-tratedmatterdistribution.Ourgoalistoseeifavarietyofgroupinteractionsbetweenthemostmassivegroupmemberscanresultinsignificantchangesinthegalaxydensityprofilesoverthescaleprobedbystronglensing(15kpc).Whilestrippingoftheouterpartsofthehalocanbeexpected,theimpactoninnerregionswheretheluminouscomponentisimpor-tantislessclearinthecontextoflensing,thoughstillcrucial,asasteepeneddensityprofilewithinthisinnerregionallowstheselenssystemstobeconsistentwithcurrentHST/WMAPestimatesonH0.Weemploytheparticle-meshcodeSUPERBOXtocarryoutthegroupin-teractionsimulations.Animportantadvantageofusingsuchacodeisthatitimplementsafast,low-storageFFT-algorithmallowingsimulationswithmillionsofparticlesondesk-topmachines.Wesimulateinteractionsbetweengroupmembers,comparingthedensityprofileforthesatellitebeforeandafterinteractionforthemassrangeof1011to1013M⊙.Ourinves-tigationsshowasignificantsteepeningofthedensityprofileintheregionof∼5-20kpc,i.e.thatwhichdominatesstronglensinginlensgalaxies.Thiseffectisindependentoftheinitialmass-to-lightratio.Additionally,thesteepeningintheinnerregionistransientinnature,withconsecutiveinteractionsreturningtheprofiletoanisothermalstatewithinatimeframeof∼0.5-2.0Gyr.ThisfactormayhelpexplainwhylensgalaxiesthatproducelowervaluesofH0(i.e.thosewithpossiblysteeperprofiles)arefarfewerinnumberthanthosewhichagreewithboththeHSTkeyprojectvalueforH0andisothermality,sinceonewouldhavetoobservethelensgalaxyduringthistransientsteepenedphase.
Keywords:Methods:N-bodysimulations–galaxies:structure–galaxies:interactions–galaxies:haloes–Gravitationallensing
1INTRODUCTION
ArangeofvaluesfortheHubbleconstantisobtainedfromdifferentstronggravitationallenssystemswithmeasuredimagetimedelays,assumingisothermalmodelsforthelensinggalax-ies(e.g.Biggsetal.1999;Gil-Merino,Wisotzki&Wambsganss2002).TheestimatesaretypicallylowerthanthevaluesfromtheHSTkeyprojectandWMAPwhichareconsistentwitheachotherat72±8kms−1Mpc−1and72±5kms−1Mpc−1,re-spectively(Freedmanetal.2001;Spergeletal.2003).SincethisHubbleconstantvalueisconsideredrobust,thisvariationraisesquestionsastotherelativeextentofthegalaxyhaloandthelu-minouscomponentsincethederivedvaluesfundamentallyde-⋆
pendontheassumedlenspotentialandmattersurfacedensi-ties.Anumberofdifferentlymotivatedstudieshavefoundthattheinnerregionsoflensgalaxiesexhibitisothermaldensitypro-files(e.g.Rusin,Kochanek&Keeton2003),includingrecentre-sultsfromtheSloanSLACSsurvey(Koopmansetal.2006)which
.02−η
foundη=2.01+0)whenstudying15early-−0.03(1σ;ρtot∝r
typegalaxies.Moreover,studiesinferringtheHubbleconstantfrom10time-delaylensgalaxiesproducedvaluesinagreementwiththeHST/WMAPvalue,whilestillbeingconsistentwithsimu-latedtime-delaysfromN-bodygalaxieswhichwereisothermalinnature(Sahaetal.2006).Evenarelativelysimpleanalysisus-ingtheexistingtimedelaysystemsindicatesaconsistencywithisothermality(Dobke&King2006).Stellardynamicalstudiesalsopointtowardsisothermaldensityprofilesintheinnerregionsof
E-mail:bdobke@;ljk@;madf@;ast.cam.ac.uk
2B.M.Dobkeetal.
galaxies(e.g.Rixetal.1997;Romanowsky&Kochanek1999;Gerhardetal.2001;Treu&Koopmans2002a).
Despitethisapparenttrendtowardsisothermality,westillob-serveanumberofsystemswhereitishardtoreconcileH0val-ueswiththeHSTkeyprojectvaluewhenassuminganisother-malmodel.ModellingofthesystemsPG1115+080,B1600+434,HE2149-2745,andSBS1520+530hasshownthatthesesystemsprefermorecentrallyconcentrateddensityprofilesandhencenon-isothermalmodels(Kochanek2002;Kochanek&Schechter2004).InthespecificcaseofPG1115+080,detailedmodellingdonebycombininglensing,stellarkinematicandmass-to-lightratiocon-straints,inordertobuildatwo-componentmodel,showsamassdensityprofilesignificantlysteeperthanisothermalatη=2.35±0.15,whereρtot∝r−η.However,thederivedvaluefortheHubble
constantcametoH0=59+12−1
Mpc−1,steeperprofileto−7kms
implyingtheneedforanevenagreewiththeHSTkeyprojectvalue(Treu&Koopmans2002b).
Keeton&Zabludoff(2004)haveshownthatlensmodelsoffour-imagesystemsoverestimatetheHubbleparameterbyupto15%whenneglectingtheeffectofthecontributionfromothergroupmembersonthepotentialofthelensgalaxy,withanevenhigherdiscrepancyfortwo-imagesystems.HenceaccountingforenvironmentwouldfurtherreducethederivedvalueofH0forafixedprimarylensmodel,requiringtheslopeoftheprimarylenstobefurthersteepenedtoobtainconsistencywiththeHSTkeyprojectvalue.Additionally,outsidethegroupenvironment,line-ofsightstructurescanprovidecontributionstothelenspotential(Momchevaetal.2006).
Whileisothermalsystemscertainlyappeartobethemoreprevalent,anexplanationofthissub-sampleoflensgalaxiesre-quiringnon-isothermalprofilesisnotclear.Onesuggestionfo-cusesonthepossiblerolethatthegroupmayhaveonthelensgalaxy,specificallytheeffectoftidalstrippingofsatellitegalax-ies(Kochaneketal.2006)asrecentlyobservedinclustersus-inggalaxy-galaxylensing(Limousinetal.2006).Althoughafullcensusoflensgalaxyenvironmentsisnotavailable,anumberofobservations(Tonry&Kochanek1999;Fassnachtetal.2002;Williamsetal.2006)seemtoshowthattypicalearly-typelensgalaxiesshouldbemembersofagroup.InthehalomodeldescribedbyCooray&Sheth(2002),onegalaxytypicallyliesatthecentreofthegrouphalo,whileothergalaxiesaresmallersatellitesorbitinginthathalo.Inthisscenariowehavetwodifferingcasesforgalaxystructure.Inthefirstweseethecentralgalaxieswithahighdarkmattersurfacedensityandtheluminouscomponentmakingonlyasmallfractionoftheoverallmattercontent.Inthesecondcase,weseeasatellitegalaxywithapossiblystrippedhalo,andmorecen-trallycondensedcore.Inessence,itsuggestsafundamentalhetero-geneityinearly-typegalaxiespresentingroups,andwhenappliedtolensgalaxiesthedistinctionbetweenthetwosurfacemassden-sitiescouldgiverisetoadifferenceinthederivedHubbleconstantwereastandardisothermalmodelassumed.
Thisdescriptionoftheheterogeneityingroupsbegsasimplequestion;howmuchcanthegroupmembersactuallyeffecteachotherintermsofchangingtheirmassanddensityprofiles?Insuchgroups,unlikelargeclusters,thereisnotsomuchasingledom-inantcentralgalaxy,butratherapowersharingscenariobetweentwoormoreapproximatelyequivalentgalaxies.Whileinteractionsbetweenmemberswithlargedifferencesintheirrespectivemassesshouldbeexpectedtoproducelargedynamicalandstructuralef-fectsinthelessmassivemember(e.g.ultracompactdwarf(UCD)interactions;seeFellhauer&Kroupa2006),theeffectofinterac-tionsbetweenmoresimilarlymatchedgroupmembersisperhaps
notsoclearwhenconsideringtheeffectinthecontextoflensgalax-ies.Indeed,althoughcertainpaststudies(e.g.Hayashietal.2003;Kazantzidisetal.2004)haveinvestigatedtheeffectofsatellite-halointeractions,thefocushasbeenontheevolutionofsubstruc-tureoroftheveryinnercuspratherthantheeffectoncosmologicalparameterderivationfromlensgalaxies.
Thequestionposedisacomplexone,andtheparameterspaceofgroupinteractionsisvast.Inthispaperouraimistoestablishwhether,overthescaleprobedbystronglensing(15kpc),signif-icantchangesinthedensityprofileofagalaxyonasatelliteorbitcanbeinducedbyinteractionswithagroupgalaxyatacentrallo-cale.Whilestrippingoftheouterpartsofthesatellite’shalocouldbeeasilyexpected,theimpactoninnerregionswherethelumi-nouscomponentisimportantislessclearinthecontextoflensing,thoughcrucial,asitiswithasteepeneddensityprofilewithinthisinnerregionthatthetimedelaysfortheselenssystemscanagreewithcurrentHST/WMAPestimatesonH0.Inthiswayweascer-tainifanothermechanismisrequiredtoalterdensityprofiles,pos-siblyduringthegroup’sformation.
Theoutlineofthepaperisasfollows;in§2webrieflyintro-ducetheN-bodycodeusedtosimulatetheinteractions,withdetailsoftheexactparametersofthesimulatedobjects.In§3,wegoontopresentresultsanddiscusstheiranalysisintheframeworkoftheproblem.Finally,§4drawssomeconclusionsbaseduponourfindings.
2THEORYANDSIMULATIONSETUP2.1Theparticle-meshcodeSUPERBOX
Ouranalysisemploystheparticle-meshcodeSUPERBOXtocarryoutthesimulations.Thecodeutiliseshighresolutionsub-gridsandanearestgridpoint(NGP)force-calculationschemebasedonthesecondderivativesoftheinputpotential.Animportantadvantageofusingsuchacodeisthefactthatitimplementsafast,low-storageFFT-algorithmgivingthepossibilitytoworkwithmillionsofpar-ticlesondesk-topmachinesorsmallclusters.
Foreachobjectusedinthesimulation,thereare5gridswith3differentresolutions.Forthepurposesofoursimulationsetup,wedefinethesizeoftheinner,middleandoutergridsizes.Theinnergridisthehighest-resolutiongridwhichresolvesthecentreofthegalaxy.Themiddlegridhasanintermediateresolutiontoresolvethegalaxyasawhole,whiletheoutergridisthesizeofthewholesimulationarea(i.e.‘thelocaluniverse’),andhasthelowestresolution.Theinnerandmiddlegridremainfocusedontheobjectthroughoutthesimulation.Eachgridhasapredefinednumberofmesh-points.Inoursimulationsweuse26mesh-points.Doublingthenumberto27showednosignificanteffectontheoverallresultsdiscussedin§3,indicatingahighenoughlevelofresolution.ForafulldescriptionofthecodeandgridstructureseeFellhaueretal.(2000).
2.2SimulationSetup
Wefocusthemainbodyofourinvestigationsonapproximatelyimitatingthedynamicsandparametersoflenssystemswithaknownhistoryoflensmodelswithlowdarkmattersurfacedensi-ties,andhencepossiblesteeperdensityprofiles,e.g.PG1115+080,B1600+434,HE2149-2745,SBS1520+530(Kochanek2002),andassuchareclearcandidatesforpossiblesatellitestripping.Weuse
Steepeneddensityprofilesviagroupinteractions
100
3
80R [10%...(10)...90%] (kpc) 60
40
20
0
0 2 4
6 8Time (Gyrs)
10 12
Figure1.Left:ContourplotofanNFWhaloafterundergoingisolatedintegration.Thecontourshave(logarithmic)magnitudespacingwiththeinnermostandoutermostcontourscorrespondingto16and36magarcsec−2respectively.Theobjectshowsclearlydefinedsymmetricalstructureandisreadytobeusedinasimulationscenario.Right:TheevolutiontodynamicequilibriumasshownbytheLagrangian-radiiofthemassshellsof10%to90%ofparticlesinatypicalsimulation.Theflatteningofthelineswithtimeshowsthatanequilibriumstatehasbeenreached,andthattheobjectisreadytobeusedinaninteractionscenario.
300 200 100y (kpc) 0-100-200-300
-300
Central PotentialSatellite Orbit100kpc radius150kpc radius
-200-100
0x (kpc)
100 200 300
Figure2.Left:Exampleofapathtakeninthex-yplaneduringasimulationrun.Theorbitstartingpositioninthex-yplaneis(0,-300)kpc,withatangentialvelocityVtan=+100kms−1inthex-dimension.Thisparticularrunshowstheinteractionbetweena1011M⊙objectafterundergoingthreepassesofacentral1012M⊙object.Theruntimeis7.3×109years.Alsoshownarethe100kpcand150kpcradialdistancesfromthecentralpotential,beyondwhichthesatellitespends78%and%ofitsorbittimerespectively.Right:Typicalcontourplotforthesame1011M⊙haloafterundergoingtwointeractionswitha1012M⊙centralobject.Notetheformationoftidal-tailstructuresintheouterregions.
thetermsatelliteheretorefertoagalaxyundergoingorbitalinter-actionswithanothergalaxy,whetherthatbeofequivalentorhighermass,andnotinthesenseofe.g.adwarfellipticalsatellite.SomeoftheparametersusedtosetupthemodelgalaxiesweretakeninpartfromImpeyetal.(1998)andKeeton&Zabludoff(2004).Param-eterssuchasmassandscaleareobviouslyoftenmodeldependentandassuchwereonlytakenasapproximateguidevaluesandsanitychecks.Inactuality,variationsofuptoanorderofmagnitudeinthemassesofthemodelobjectshadlittleeffectontheoverallresults;moreimportantweretherelativemassesbetweentheinteractingbodies.
ForthedarkmatterhalocomponentofeachofthegroupgalaxiesweuseaNavarro,Frenk&White(NFW)profile(Navarro,Frenk&White1996)whilefortheluminouscomponentweuseaHernquistprofile(Hernquist1990).Hence,thecombineddensityprofileforeachofthemodelledgalaxieshastheform,
ρtot(r)=ρN(r)+ρH(r)
=
ρ0,Nrs,N
2πr(rs,H+r)3
(1)
WehavetheoptioninSUPERBOXtoeitherdefinethecharac-teristicdensityfortheNFWhalo,ρ0,N,orprovidethetotalmass,MN,inwhichcasethecodewillcalculatethedensityinequation(1)bymeansofthefollowing,ρ0,N=
MN
rs,N+r
(2)
Inordertofullydefinetheobjectsusedinthesimulationswemustprovidevaluesforthefollowingparameters;NFWtotalmass(MN)andscalelength(rs,N),theHernquisttotalmass(MH)and
4B.M.Dobkeetal.
Table1.Tableofourinitialmodelparametersforthreeparticularinteractions.ThefirsttworowscorrespondtotheobjectparametersthatwereusedinthesimulationsofFig.3andFig.4.WeincludeNFWandHernquistmasswithcorrespondingscaleandcut-offradii,thecharacteristiccrossingtime(Tcr)andthegridresolutionsusedineachcase.Weusethevirialradiusasanapproximateguideforthecut-offradii.Themiddlegridsizeisthenchosentoencompassthisvalue.Parametersforthe1013M⊙objectweretakeninpartfromMcLaughlin(1999)andVesperinietal.(2003)
1011/10101012/10111012/1011
10/1020/1020/10120/120250/120250/120292.36250.58250.58
1012/10111012/10111013/1012
20/1020/10560/5250/120250/120150/15050/150/100050/300/100050/300/1000
ρi(r)
rcut
dφtotal(r′)
r
Steepeneddensityprofilesviagroupinteractions
0-2
-2
Log density (Msolar/pc3)Log density (Msolar/pc3)-4-6-8-10-12-14
-5 0.7
-5 0.7Log density (Msolar/pc3)Initial density profileDensity profile after 2nd interactionDensity profile after 3rd interaction-1
Initial density profileTop solid line: Power-law fit η = 2.01Density profile after 2nd interactionBottom solid line: Power-law fit η = 3.05
-1
Initial density profileTop solid line: Power-law fit η = 2.01Density profile after 3rd interactionBottom solid line: Power-law fit η = 2.04
5
-2
-3-3
-4-4
-1-0.5 0
0.5 1 1.5Log radius (kpc)
2 2.5 3 0.8
0.9 1 1.1Log radius (kpc)
1.2 1.3 0.8
0.9 1 1.1Log radius (kpc)
1.2 1.3
Figure3.Left:Combineddensityprofile(NFW+Hernquist)beforeandaftera2ndand3rdinteractionbetweena1011M⊙galaxyand1012M⊙objectmodelledwithananalyticpotential.Initialx-ypositionandvelocityofthesatellitewere(0,-300)kpcand(+60,0)kms−1respectively.Middle:Enlargedplotofthedensityprofileintheregion15kpcafterthe2ndinteraction.Dashedlineisthecombineddensityprofilebeforeinteraction,whiledottedlineisthecombineddensityprofileafterinteraction.Topsolidlineshowsapower-lawfitwithη=2.01±0.03i.e.isothermal,whilebottomsolidlineshowsapower-lawfitwithη=3.05±0.07.Theprofilehassteepenedsignificantly.Right:Enlargedplotofthedensityprofileintheregion15kpcafterthe3rdinteraction,∼2×109yearsafterthe2ndinteraction.Dashedlineisthecombineddensityprofilebeforeinteraction,whiledottedlineisthecombineddensityprofileafterinteraction.Topsolidlinesshowapower-lawfitwithη=2.01±0.03,withthebottomatη=2.04±0.06.Theprofilehasreturnedtoanisothermalstate.
2
Initial density profile
Density profile after 3rd interactionDensity profile after 4th interaction
-1Log density (Msolar/pc3) 0Log density (Msolar/pc3)Initial density profile
Top solid line: Power-law fit η = 2.00Density profile after 3rd interactionBottom solid line: Power-law fit η = 2.70
Log density (Msolar/pc3)-1
Initial density profile
Top solid line: Power-law fit η = 2.00Density profile after 4th interactionBottom solid line: Power-law fit η = 2.01
-2
-4
-2-2
-6
-8
-10
-1-0.5 0
0.5 1 1.5Log radius (kpc)
2 2.5 3
-3 0.8
0.9
1 1.1Log radius (kpc)
1.2 1.3
-3 0.8
0.9
1 1.1Log radius (kpc)
1.2 1.3
Figure4.Left:Combineddensityprofile(NFW+Hernquist)beforeandaftera3rdand4thinteractionbetweena1012M⊙galaxyand1012M⊙objectmodelledwithananalyticpotential.Initialx-ypositionandvelocityofthesatellitewere(0,-300)kpcand(+100,0)kms−1respectively.Middle:Enlargedplotofthedensityprofileintheregion15kpcafterthe3rdinteraction.Dashedlineisthecombineddensityprofilebeforeinteraction,whiledottedlineisthecombineddensityprofileafterinteraction.Topsolidlineshowsapower-lawfitwithη=2.00±0.02i.e.isothermal,whilebottomsolidlineshowsapower-lawfitwithη=2.70±0.06.TheprofilehassteepenedlesssothaninthecaseshowninFig.3,althoughtheeffectisstillsignificant.Right:Enlargedplotofthedensityprofileintheregion15kpcafterthe4thinteraction,∼0.5×109yearsafterthe3rdinteraction.Dashedlineisthecombineddensityprofilebeforeinteraction,whiledottedlineisthecombineddensityprofileafterinteraction.Topsolidlinesshowapower-lawfitwithη=2.00±0.02,withthebottomatη=2.01±0.20.Theprofilehasreturnedtoanapproximatelyisothermalstate.
(NFW+Hernquist)forthesimulatedsatellitegalaxy(topmostline),andthedensityprofileafterthe2ndand3rdinteractionsim-mediatelybelow.Themassesoftheinteractingbodieswere1011and1012M⊙forthesatelliteandcentralgalaxyrespectively.Theinitialmass-to-lightratioofbothgalaxieswassetto10:1,whilethestartingpositionwassetat(0,-300)kpc,withaninitialtangen-tialvelocityof+60kms−1inthex-dimension.Forthepurposesofthisstudyweareinterestedinhowtheinteractionsintheouterpartofthehaloeffectboththeluminousanddarkmattercomponentsintheinnerpartofthegalaxy,particularlytheregion15kpcasthisscaleencompassesthestronglensingregime.InFig.3(mid-dle),weenlargethisregion,justcomparingtheinitialandpost-2ndinteractiondensityprofiles.Here,thedashedlineistheprofilebe-foreinteraction,whilethedottedlineistheprofileafterinteraction.
Thetopsolidlineshowsapower-lawfitwithη=2.01±0.03,i.e.isothermal,whilethebottomsolidlineshowsafitwithη=3.05±0.07.Weclearlyseesignificantsteepeningoccurringafterthe2ndinteractionovertheregionof∼5-20kpc.TherightplotofFig.3focusesoncomparingtheinitialandpost-3rdinteractiondensityprofiles.Thetimeelapsedbetweenthetwoconsecutiveinteractionsis∼2×109years,duringwhichtheslopeoftheprofileremainsapproximatelyconstantatη∼3.0.Wenowseethatafterthe3rdinteraction,theslopehasreturnedoncemoretoanisothermalstateatη=2.04±0.06,andhencethesteepeningobservedafterthe2ndinteractionappearstransientinnature.
WeseeasimilareffecttakingplaceinFig.4,exceptinthiscaseweareinvestigatingtheinteractionsbetweentwogalaxiesofsimilarmass,bothbeing1012M⊙.Weseethatthereductioninthe
6B.M.Dobkeetal.
1.4e+041.2e+04
Pot. Energy (Arb. Units) Kin. Energy (Arb. Units)1.0e+048.0e+036.0e+034.0e+032.0e+030.0e+00
0.0e+00-5.0e+03
Pot. Energy (Arb. Units) 0
1
2
3 4Time (Gyrs)
5
6
7
-1.0e+04-1.5e+04-2.0e+04-2.5e+04-3.0e+04-3.5e+04-4.0e+04
-5.0e+03-1.0e+04-1.5e+04-2.0e+04-2.5e+04-3.0e+04-3.5e+04-4.0e+04-4.5e+04
0 1 2
3 4Time (Gyrs)
5 6 7 0 1 2
3 4Time (Gyrs)
5 6 7
Figure5.Left:ThetimeevolutionofkineticenergyoftheboundremnantsoftheinteractingsatelliteofFig.3.Notethethreefluctuationsinenergyresultantfromthethreeinteractionsandthatthisenergychangebecomesprogressivelysmallerwithtimeandhencethesteepeningoftheprofilesbecomeslesssevereaftereachpassage.Middle:ThetimeevolutionofpotentialenergyoftheboundremnantsoftheinteractingsatelliteofFig.3.Againweseethethreeenergyfluctuations,eachbecomeslesssevereaftereachpassage.Thisresultsintheprofilebeingultimatelyunchangeddespiteatransientsteepeningduringthefirstinteractions.Right:Thetimeevolutionofpotentialenergyjustwithintheregionof5-20kpc,forthecaseoftheinteractingsatelliteofFig.3.Weseethepotentialwellincreaseindepthaftertheinteractions,confirmingthesteepeningoftheprofile,whichagainlessensaftereachinteraction.
relativemassnecessitatesagreaternumberofinteractioneventstoinitiatethesteepeningwhencomparedwiththepreviouscase.InthemiddleplotofFig.4thesteepenedprofileafterthe3rdinter-actioncannowbefittedwithaslopeofη=2.70±0.06overtherangeof∼6-20kpc.Althoughlessthaninthe1011vs.1012M⊙case,thisisstillasignificanteffect.Onceagain,afterthenextinteractionweobservetheprofilereturningtoanapproximatelyisothermalstatewithη=2.01±0.20(Fig.4,right).Thistimethetransientsteepeninglastsfor∼0.5×109years.
WenowconsiderthesteepeningeffectseeninFig.3andFig.4intermsofenergytransferduringtheinteractions.DisplayedinFig.5isthetimeevolutionofthekineticandpotentialenergiesoftheboundremnantsfortheinteractionsshowninFig.3.Duringthefly-bysofthesatellitegalaxy,energygetstransformedfromorbitaltointernalenergy.Particlesinthesatellitegainkineticenergyandthosethatarelooselybound,mainlyintheouterparts,getstrippedresultinginthesteepeningoftheouterprofile.Closertowardstheinnerportionofthegalaxytidalshocksaremoreimportantthanstripping(e.g.Readetal.2006;Gnedin,Hernquist&Ostriker1999).Closepericentrepassescangeneratemattercompressionspossiblyresultingintheobservedtransientfluctuationsintheden-sityprofile.Asthemassgetsredistributedandtheobjectreturnsonceagaintoequilibrium,theoriginalslopereturnstoitsapproxi-mateinitialstate.NoticeinFig.5thatthisenergychangebecomesprogressivelysmallerwithtimeandhencethesteepeningoftheprofilesbecomeslessandlesssevereaftereachpassage,resultinginareturntoisothermality.Withgreatertimeweseenochangeintheprofile,confirmingthetransientnatureofthesteepeningseeninFig.3andFig.4.Ultimately,thedensityprofileswillbeapproxi-matelyunchangedfromtheirinitialstate,inagreementwithanum-berofotherstudies(e.g.Kazantzidisetal.2004).IntherighthandplotofFig.5,wedisplaytheevolutionofpotentialenergywithtimeforjustthe5-20kpcregion.Noticehowthepotentialwellin-creasesindepthaftertheinteractions,confirmingthesteepeningoftheprofilethatisseeninFig.3.
ForbothoftheinteractionscenariosdisplayedinFig.3andFig.4,wealsoinvestigatedtheeffectofvaryingtheinitialmass-to-lightratioofthesatellitegalaxy.InadditiontothecasesshownforanM/L=10:1,weperformedsimulationsusingM/L=20:1and5:1.Inallcasestherewasverylittlevariationintheresults,andtheoveralleffectofsteepeningfollowedbyareturntoisothermalitywasobserved.Wealsoexaminedhighermassinteractionsbetween
-1
Initial density profileTop solid line: Power-law fit η = 2.01Density profile after 3rd interactionMiddle solid line: Power-law fit η = 2.70
Density profile after 4th interactionBottom solid line: Power-law fit η = 2.01
Log density (Msolar/pc3)-2
-3 0.8
0.9
1
Log radius (kpc)
1.1 1.2
Figure6.Densityprofilebeforeandaftera3rdand4thinteractionbetweentwo1012M⊙objects.Herewehavereplacedthestaticpotential(asinFig.3andFig.4)withaparticlebasedobject.Asinthestaticpotentialcase,wecontinuetoseethedistinctivesteepeningfollowedbyareturntoanapproximateisothermalstate.
1012and1013M⊙objectsandagainobservedasimilarpatternofsteepeningfollowedbyareturntoisothermality,althoughthelargerofthesetwoobjectsrepresentsamassnormallyonlyasso-ciatedwithcentrallocationsinclustersratherthaningroups.Toconfirmthattheexclusionofdynamicalfrictiondoesnotoverlyef-fectthefundamentalresult,wereplacethecentralstaticpotentialwithaparticlemodelledobject.Weperformasimulationbetweentwo1012M⊙galaxies,i.e.thecaseinwhichdynamicalfrictionshouldbeatitsgreatest.AsshowninFig.6wecontinuetoseethetransientsteepeninginthedensityprofile.
4DISCUSSIONANDCONCLUSIONS
WeappeartorequiresteeperthanisothermaldensityprofilesinordertoreconcilecertainlensgalaxieswithcurrentestimatesoftheHubbleconstantfromHST/WMAP.ThesegalaxiesincludePG1115+080,B1600+434,HE2149-2745,andSBS1520+530.Onepossibleexplanationisthatcertainearly-typelensgalaxiesareoff-setfromtheFundamentalPlaneandassuchearly-typegalaxiesingeneralmightdisplayaheterogeneityintheirstructureandhence
Steepeneddensityprofilesviagroupinteractions
7
massdensityprofiles.Thistheoryproposesthattheheterogene-ityresultsfromgroupinteractionsbetweenthelensgalaxyanditsfellowgroupmembers,resultingincentralgalaxieshavingisother-malprofilesandsatelliteshavingsteeperthanisothermalprofiles.Anumberofstudiesseemtoagreethatthediscrepanciesinde-rivedH0valuescouldbetheresultofstructuraldifferencesinlensgalaxiesasopposedtootherfactors(Treu&Koopmans2002b;Kochaneketal.2006).
Wehaveinvestigatedgroupinteractionsbetweengroupmem-berswithmassesrangingfrom1011to1013Masignificantsteepeningofthedensity⊙.Ourinvestiga-tionsshowprofileinthein-nerregion,pertinenttostronglensing.Thiseffectappearstobeindependentoftheinitialmass-to-lightratio,whilethepreciseini-tialorbitalparametersmadelittledifferencetothefundamentalre-sultprovidedconsecutiveinteractionswiththecentralgalaxytookplace.Themagnitudeofthesteepeningitselfvariedwiththerel-ativemassesoftheinteractingobjects;forcaseswherethemassdifferedbyanorderofmagnitude,asforthecasesininteractionsinvolving1011vs.1012Moriginallyisothermalprofiles⊙and1012vs.1013M(η=2)steepenupto⊙,weobserveη=3.Forthecaseswheremasseswereofsimilarmagnitude,i.e.aninteractionbetweentwo1012Mup⊙groupmembers,weobserveasteepeningoftheprofileslopeto∼η=2.7.Inbothcases,modellingsuchsystemswithisothermalmodelswouldresultinasignificantunder-estimateoftheHubbleconstant.
Westressedin§1thatmostearly-typegalaxiesappeartoresideingroups(Tonry&Kochanek1999;Fassnachtetal.2002;Williamsetal.2006),andasdiscussedbyKochaneketal.(2006),thereisaplay-offinlensingopticaldepthbetweensatellitegalaxiesbeingmorenumerousthanthemostmassivecentralgroupgalax-ies,yethavingalowerlensingcross-section(seealsoOguri2006).Evenforsatellitegalaxies,thesteepeningintheinnerregionseemstransientinnature,withconsecutiveinteractionsoftenreturningtheprofiletoanisothermalstatewithinatimeframeof2Gyr.Thisfactormayhelpexplainwhylensgalaxiesthatproducelowerval-uesofH0(i.e.thosewithpossiblysteeperprofiles)arefarfewerinnumberthanthosewhichagreewithboththeHSTkeyprojectvalueforH0andisothermality.Inaddition,itisimportanttonotethatthistransientfluctuationinsteepnessisconsistentwithstud-iesshowingthatdensityprofilesoverlongertimescalescanbero-bustdespitestronginteractionsormergers(Kazantzidisetal.2004;Kazantzidis,Zentner&Kravtsov2006).
Weshouldhighlightthatotherfactorsbesidestheenviron-mentdiscussedin§1arethoughttocontributetodiscrepanciesinderivedHubbleconstantvaluesfromcertainsystems.Recently,Saha&Williams(2006)showedinaninvestigationwithmodelsof35galaxylensesthatshape-modellingdegeneracies(e.g.causedbytriaxiality)canalsocontributetochangesinthetimedelaysandhencethederivedHubbleconstantvalue.ThiseffectalonewouldneedtobeverysignificanttofullyaccountforthesystemswiththelowestderivedvaluesofH0.Itseemsprobablethatacombi-nationofeffects,alongwithneglectofphysicalsteepeningduetostripping,canaccountforlowH0values.
Lookingtowardsthefuture,spaceandgroundbasedobser-vatoriessuchasGAIAandLSSTwilluncoverroughlyfiftytimesmoremultiplyimagedquasarsthanwehaveidentifiedtoday.Withagreatersampleoflenssystemstostudy,andbycombininglensmodelswithstellardynamicalconstraints,heterogeneityinearly-typegalaxiesasafunctionofenvironmentandredshiftwillbeex-ploredindetail.Thiswillalsoallowunprecedentedconstraintsontheassemblyanddistributionofdarkmatterongalaxyandgalaxygroupscales.
ACKNOWLEDGMENTS
WethankMarkWilkinsonandChrisFassnachtfordiscussionsandtheanonymousrefereefortheirconstructivecomments.ThisworkwassupportedbyPPARCthroughaPhDstudentship(BMD),bytheRoyalSociety(LJK),andbyPPARC(MF)
REFERENCES
BiggsA.D.,BrowneI.W.A.,HelbigP.,KoopmansL.V.E.,Wilkinson,P.N.,Perley,R.A.,1999,MNRAS,304,349CoorayA.,ShethR.,2002,Phys.Rep.,372,1DobkeB.M.,KingL.J.,2006,A&A,460,7
FassnachtC.D.,LubinL.M.,SquiresG.K.,ReadheadA.C.S.,2002,AAS,201,8009
FellhauerM.,KroupaP.,2006,MNRAS,367,1577
FellhauerM.,KroupaP.,BaumgardtH.,BienR.,BoilyC.M.,SpurzemR.,WassmerN.,2000,NewAstron.,5,305FreedmanW.L.etal.,2001,ApJ,553,47
GnedinO.Y.,HernquistL.,OstrikerJ.P.,1999,ApJ,514,109GerhardO.,KronawitterA.,SagliaR.P.,BenderR.,2001,AJ,121,1936
Gil-MerinoR.,WisotzkiL.,WambsganssJ.,2002,A&A,381,428
HayzahiE.,NavarroJ.F.,TaylorJ.E.,StadelJ.,QuinnT.,2003,ApJ,584,541
HernquistL.,1990,ApJ,356,359
ImpeyC.D.,FalcoE.E.,KochanekC.S.,Leh´arJ.,McLeodB.A.,RixH.-W.,PengC.Y.,KeetonC.R.,1998,ApJ,509,551KazantzidisS.,ZentnerA.R.,KravtsovA.V.,2006,ApJ,1,7
KazantzidisS.,MayerL.,MastropietroC.,DiemandJ.,StadelJ.,MooreB.,2004,ApJ,608,663
KeetonC.R.,ZabludoffA.I.2004,ApJ,612,660KochanekC.S.,2002,ApJ,578,25
KochanekC.S.,MorganN.D.,FalcoE.E.,McLeodB.A.,WinnJ.N.,DembickyJ.,KetzebackB.,2006,ApJ,0,47
KochanekC.S.,SchechterP.L.,2004,‘MeasuringandMod-ellingtheUniverse’,CarnegieObservatoriesCentennialSym-posia.PublishedbyCambridgeUniversityPress,aspartoftheCarnegieObservatoriesAstrophysicsSeries.EditedbyW.L.Freedman
KoopmansL.V.E.,TreuT.,BoltonA.S.,BurlesS.,MoustakasL.A.,2006,ApJ,9,599
KroupaP.,1997,NewAstron.,2,139
LimousinM.,KneibJ.P.,BardeauS.,NatarajanP.,CzoskeO.,SmailI.,EbelingH.,SmithG.P.,A&A,461,881McLaughlinD.E.,1999,ApJ,512,L9
MomchevaI.,WilliamsK.,KeetonC.,ZabludoffA.,2006,ApJ,1,169
NavarroJ.F.,FrenkC.S.,WhiteS.D.M.,1996,ApJ,462,563OguriM.,2006,MNRAS,367,1241
ReadJ.I.,WilkinsonM.I.,EvansN.W.,GilmoreG.,KleynaJ.T.,2006,MNRAS,367,387
RixH.-W.,deZeeuwP.T.,CrettonN.,vanderMarelR.P.,CarolloC.M.,1997,ApJ,488,702
RomanowskyA.J.,KochanekC.S.,1999,ApJ,516,18RusinD.,KochanekC.S.,KeetonC.R.,2003,ApJ,595,29SahaP.,ColesJ.,Macci´oA.V.,WilliamsL.L.R.,2006,ApJ,650,L17
SahaP.,WilliamsL.L.R.,2006,ApJ,653,936
8B.M.Dobkeetal.
SpergelD.N.etal.,2003,ApJ,148,175
TonryJ.L.,KochanekC.S.,1999,AJ,117,2034TreuT.,KoopmansL.V.E.,2002a,ApJ,575,87
TreuT.,KoopmansL.V.E.,2002b,MNRAS,337,L6
VesperiniE.,ZepfS.E.,KunduA.,AshmanK.M.,2003,ApJ,593,760
WilliamsK.A.,MomchevaI.,KeetonC.R.,ZabludoffA.I.,Leh´arJ.,2006,ApJ,6,85
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- huatuo0.cn 版权所有 湘ICP备2023017654号-2
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务