A B C D8.反比例函数y= kx
的图象在一、三象限,则二次函数y=kx2-k2
x-k的图象大致为图中的( )
A B C D
9.反比例函数y= k2
x
中,当x> 0时,y随x的增大而增大,则二次函数y=kx+2kx+c的图象大致为图中的(
A B C D
10.已知抛物线y=ax2
+bx+c(a≠0)的图象如图所示,则下列结论: ①a,b同号; ②当x=1和x=3时,函数值相同;
③4a+b=0; ④当y=-2时,x的值只能取0; 其中正确的个数是( ) A.1 B.2 C.3 D.4
11.已知二次函数y=ax2
+bx+c经过一、三、四象限(不经过原点和第二象限)则直线y=ax+bc不经过( )
)3
A.第一象限 B.第二象限 C.第三象限 D.第四象限
题型10、二次函数与x轴、y轴的交点(二次函数与一元二次方程的关系)
1. 如果二次函数y=x+4x+c图象与x轴没有交点,其中c为整数,则c= (写一个即可)
2
2. 二次函数y=x-2x-3图象与x轴交点之间的距离为
2
3. 抛物线y=-3x+2x-1的图象与x轴交点的个数是( ) A.没有交点 B.只有一个交点 C.有两个交点 D.有三个交点
2
4. 如图所示,二次函数y=x-4x+3的图象交x轴于A、B两点, 交y 轴于点C, 则△ABC的面
积为( )
A.6 B.4 C.3 D.1
492
5. 已知抛物线y=5x+(m-1)x+m与x轴的两个交点在y轴同侧,它们的距离平方等于为 ,则m的值为( )
25
A.-2 B.12 C.24 D.48
2
6. 若二次函数y=(m+5)x+2(m+1)x+m的图象全部在x轴的上方,则m 的取值范围是
2
7. 已知抛物线y=x-2x-8,
(1)求证:该抛物线与x轴一定有两个交点;
(2)若该抛物线与x轴的两个交点为A、B,且它的顶点为P,求△ABP的面积。
2
题型11、函数解析式的求法
一、已知抛物线上任意三点时,通常设解析式为一般式y=ax+bx+c,然后解三元方程组求解; 1.已知二次函数的图象经过A(0,3)、B(1,3)、C(-1,1)三点,求该二次函数的解析式。
2.已知抛物线过A(1,0)和B(4,0)两点,交y轴于C点且BC=5,求该二次函数的解析式。
2
二、已知抛物线的顶点坐标,或抛物线上纵坐标相同的两点和抛物线上另一点时,通常设解析式为顶点式y=a(x-h)+k求解。
3.已知二次函数的图象的顶点坐标为(1,-6),且经过点(2,-8),求该二次函数的解析式。
4.已知二次函数的图象的顶点坐标为(1,-3),且经过点P(2,0)点,求二次函数的解析式。
三、已知抛物线与轴的交点的坐标时,通常设解析式为交点式y=a(x-x1)(x-x2)。 5.二次函数的图象经过A(-1,0),B(3,0),函数有最小值-8,求该二次函数的解析式。
6.已知x=1时,函数有最大值5,且图形经过点(0,-3),则该二次函数的解析式 。
2
7.抛物线y=2x+bx+c与x 轴交于(2,0)、(-3,0),则该二次函数的解析式 。
22
8.若抛物线y=ax+bx+c的顶点坐标为(1,3),且与y=2x的开口大小相同,方向相反,则该二次函数的解析式 。
2
9.抛物线y=2x+bx+c与x 轴交于(-1,0)、(3,0),则b= ,c= . 10.若抛物线与x 轴交于(2,0)、(3,0),与y轴交于(0,-4),则该二次函数的解析式 。 11.根据下列条件求关于x的二次函数的解析式
2
4
(1)当x=3时,y最小值=-1,且图象过(0,7)
3
(2)图象过点(0,-2)(1,2)且对称轴为直线x=
2
(3)图象经过(0,1)(1,0)(3,0)
(4)当x=1时,y=0; x=0时,y= -2,x=2 时,y=3
(5)抛物线顶点坐标为(-1,-2)且通过点(1,10)
11.当二次函数图象与x轴交点的横坐标分别是x1= -3,x2=1时,且与y轴交点为(0,-2),求这个二次函数的解析式
2
12.已知二次函数y=ax+bx+c的图象与x 轴交于(2,0)、(4,0),顶点到x 轴的距离为3,求函数的解析式。
111
13.知二次函数图象顶点坐标(-3, )且图象过点(2, ),求二次函数解析式及图象与y轴的交点坐标。
22
14.已知二次函数图象与x轴交点(2,0), (-1,0)与y轴交点是(0,-1)求解析式及顶点坐标。
1
15.若二次函数y=ax2+bx+c经过(1,0)且图象关于直线x= 对称,那么图象还必定经过哪一点?
2
16.y= -x2+2(k-1)x+2k-k2,它的图象经过原点,求①解析式 ②与x轴交点O、A及顶点C组成的△OAC面积。
1
17.抛物线y= (k2-2)x2+m-4kx的对称轴是直线x=2,且它的最低点在直线y= - x+2上,求函数解析式。
2
题型12、二次函数应用
(一)经济策略性
1.某商店购进一批单价为16元的日用品,销售一段时间后,为了获得更多的利润,商店决定提高销售价格。经检验发现,若按每件20元的价格销售时,每月能卖360件若按每件25元的价格销售时,每月能卖210件。假定每月销售件数y(件)是价格X的一次函数. (1)试求y与x的之间的关系式.
(2)在商品不积压,且不考虑其他因素的条件下,问销售价格定为多少时,才能使每月获得最大利润,每月的最大利润是多少?(总利润=总收入-总成本)
5
2.有一种螃蟹,从海上捕获后不放养最多只能活两天,如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去,假设放养期内蟹的个体重量基本保持不变,现有一经销商,按市场价收购了这种活蟹1000千克放养在塘内,此时市场价为每千克30元,据测算,以后每千克活蟹的市场价每天可上升1元,但是放养一天需各种费用支出400元,且平均每天还有10千克蟹死去,假定死蟹均于当天全部售出,售价都是每千克20元。 (1)设X天后每千克活蟹的市场价为P元,写出P关于X的函数关系式。
(2)如果放养X天后将活蟹一次性出售,并记1000千克蟹的销售额为Q元,写出Q关于X的函数关系式。 (2)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=销售总额—收购成本—费用),最大利润是多少?
3.某商场批单价为25元的旅游鞋。为确定 一个最佳的销售价格,在试销期采用多种价格进性销售,经试验发现:按每双30元的价格销售时,每天能卖出60双;按每双32元的价格销售时,每天能卖出52双,假定每天售出鞋的数量Y(双)是销售单位X的一次函数。 (1)求Y与X之间的函数关系式;
(2)在鞋不积压,且不考虑其它因素的情况下,求出每天的销售利润W(元)与销售单价X之间的函数关系式; (3)销售价格定为多少元时,每天获得的销售利润最多?是多少?
4.卢浦大桥拱形可以近似看作抛物线的一部分.在大桥截面1∶11000的比例图上,跨度AB=5 cm,拱高OC=0.9 cm,线段DE表示大桥拱内桥长,DE∥AB,如图(1).在比例图上,以直线AB为x轴,抛物线的对称轴为y轴,以1 cm作为数轴的单位长度,建立平面直角坐标系,如图(2).
(1)求出图(2)上以这一部分抛物线为图象的函数解析式,写出函数定义域;
(2)如果DE与AB的距离OM=0.45 cm,求卢浦大桥拱内实际桥长(备用数据:21.4,计算结果精确到1米).
6