DavidL.Meier
JetPropulsionLaboratory,CaliforniaInstituteofTechnologyOctober22,2004
Abstract.InthispaperIproposethattheinnerpartofablackholeaccretioninflow(<100rg)mayenteramagnetically-dominated,magnetosphere-likephaseinwhichthestrong,well-orderedfieldsplayamoreimportantrolethanweak,turbulentfields.Inthelow/hardstatethisflowisinteriortothestandardADAFusuallyinvokedtoexplaintheobservedhot,opticallythinemission.PreliminarysolutionsforthesenewMDAFsarepresented.
Time-dependentX-rayandradioobservationsgiveconsiderableinsightintothesepro-cesses,andanewinterpretationoftheX-raypowerspectrum(asarisingfrommanydiskradii)maybeinorder.WhileanevaporativeADAFmodelexplainsthenoisepowerabove0.01Hz,aninnerMDAFisneededtoexplainthehighfrequencycutoffnear1Hz,thepresenceofaQPO,andtheproductionofajet.TheMDAFscenarioalsoisconsistentwiththedata-based,phemonenologicalmodelspresentedatthismeetingbyseveralauthors.Keywords:blackholes,accretion,magneticfields,jets
1.Introduction:The‘BlackHoleProblem’
Ageneric,robustelectrodynamicmodelforproducingmostastrophysicaljetsisnowwellunderstood.Ithastwobasicrequirements:
−Astrongmagneticfield(VA≡B/(4πρ)1/2>>CS≡(Γp/ρ)1/2,where
VAistheAlfvenspeedandCSisthesoundspeed)thatrotatesfairlyrapidly(ΩΩK,whereΩKistheKeplerianangularvelocity).−Somemeansofloadingthisrotatingmagneticfieldwithplasmaatfairly
highelevations(Z∼Rinacylindrical[R,Z,θ]coordinatesystem).Earlymodelsaccomplishedthisloadingbycentrifugalactionfromathindisk,butmorerecentstudiessuggestthattheprimarymeansisthermal,(heatingtheplasmatoroughlythevirialtemperature;Meier,2001).ThemeansbywhichthisconfigurationproducesajetwasfirstproposedbyBlandford(1976)andLovelace(1976)andhasbeenreviewedrecentlybytheauthor(Meieretal.,2001;Meier,2004).Therotationofthemagneticfieldlinesisretardedbytheinertiaoftheplasmaload,creatingarotatinghelicalfieldconfiguration.Lorentzforcessimultaneouslypushplasmaupandoutofthesystemalongtherotationaxisandcollimatetheflowwithmagnetichoopstressbysqueezingittowardtherotationaxis,convertingrotationalenergyofthecentralengineintodirectedkineticoutflowenergyalongtherotationaxis.
c2008KluwerAcademicPublishers.PrintedintheNetherlands.Meier.tex;2/02/2008;17:48;p.1
2
DavidMeier
ThejetisacceleratedtothelocalAlfvenspeedbytherotationalAlfvenwaveandbeyondthattothelocalmagnetosonicspeedbythetoroidalmagneticpressuregradient.Theterminalvelocityofthejetisapproximatelyequaltotheescapespeedatthefootpointofthemagneticfieldintherotatingcentralengine.
1.1.SPECIFICMODELS
FOR
STELLARJETS
Whilethismodelgivesageneraldescriptionofhowastrophysicaljetsform,itdoesnotanswerthequestionofhoweachsourceproducestheabovetwomainingredients—theglobalrotatingmagneticfieldandtheplasmaload-ing.Forstellarsourcesthefirstrequirementisstraightforward:theglobalmagneticfieldisthatproducedbythestar’smagnetosphereitself.Thediscov-eryofstrongmagneticfieldsinpulsarsandprotostarsystemsisconsideredconfirmationoftheMHDjetproductionmodel.
Theplasmaloadingismoreproblematical.Inpulsarsithasbeenshownthatpairproductioncanoccurin‘sparkgaps’intheverystrongmagneticfield(1011−13G),producingtheneededplasmainsidethemagnetosphereitself(Goldreich&Julian,1969;Ruderman&Sutherland,1975).Inprotostarsystems,however,thefieldisnotnearlyasstrong,sopairproductioncannotoperate.Instead,theprotoplanetaryaccretiondiskisusedtopinchthefieldneartheequator,creatingan“X-point”(Shuetal,1994),whereplasmaisallosedtoflowfreelyfromthediskontotherotatingstellarfield.
Finally,forjetsproducedincollapsingsupernovacores(Wheeleretal,2002),theplasmacomespre-loaded,sincethemagneticfieldofthecol-lapsingcorehasbecomethreadedintotheprogenitormantleduringthelatestagesofstellarevolution.Itistherapidrotationofthecorethatissuddenlyandrapidlygenerated,bythecollapseofthatironcoretoproto-neutronstardensities.
1.2.THEBLACKHOLEPROBLEM
Whileitisclearthatblackholesystemsoftenproducefastandpowerfuljets,theypresentaseriouschallengetotheelectromagnetictheoryofjetproduction.Theplasmaloadingitselfisarelativelyeasyproblemtosolve.Thefactthatblackholesystemsthatproducejetsareassociatedwithhotaccretionflows(Fenderetal.,1999)indicatesthattheplasmamustbeloadedontothefieldlinesfromtheaccretionflowbysomethermalmeans.
Meier.tex;2/02/2008;17:48;p.2
Magnetically-DominatedAccretionFlows
3
However,bythemselves,blackholescannotsupportamagneticfield1.Theycanhavesuchafieldonlyifthereisanexternalsupplyofplasmainwhichcurrentsgeneratemagneticfluxthatcanthenthreadtheblackhole.Intheabsenceofasignificantamountofexternalplasma,ablackholelosesitsfieldinafewlight-crossingtimes(Thorne,Price,&MacDonald,1986).Thefield,therefore,mustbesupportedbycurrentsintheblackholeaccretionflow.Thisconclusionitselfpresentsaproblem,however.Accretiondisksarebelievedtobeweakly-magnetizedplasmasinhighlyturbulent,orbitalflowabouttheblackhole(Balbus&Hawley,1998).Howdoesaglobal,well-orderedrotatingmagnetospheredevelopnaturallyfromaturbulentaccretiondisk?
Inaddition,evenifaglobalmagnetospherecanbeconstructed,thereisaquestionastohowthatmagnetospherecancoupletoblackholerotationtoproduceastrongjet.Whiletheaccretiondiskitselfcanproducerotationofthemagneticfield,itcannotbethemainsourceofjetpowerinmanyjet-producingsupermassiveblackholesystems.Radiogalaxiesandquasarsthathavesimilaropticalproperties,andthereforesimilaraccretiondisks,candifferintheirradiojetluminositiesbyfactorsof105−6.Thisismosteasilyexplainedbytyingjetproductiontorotationofthecentralobject,justasitisdoneinstellarjet-producingsystems.Inaddition,blackholesystemsareknowntoproducejets∼30timesstrongerthanthosefromneutronstarswithsimilaraccretionrates(Migliarietal.,2003).Whilethiscomparisonmaybecomplicatedbyeffectsoftheneutronstars’magneticfield,astrongcouplingofjetproductiontotheblackholespinalsomaybeatwork.
Tosolvethisproblemwewillassumeherethatthe“magneticPenrose”mechanismofextractingrotationalenergyisatwork(Koideetal.,2002):ifplasmathreadedwithamagneticfieldenterstheergosphere,thenthatplasmacanbeacceleratedinadirectionoppositetotheblackhole’sspin,acquiringnegativeenergyandangularmomentumintheprocess.Positiveenergyandangularmomentumthenistransferredtotherotatingmagneticfield,whichusesthattoaccelerateandcollimatethejet.
Thepurposeofthispaperistoexploreanswerstothetworemainingquestions:1)howdoesaturbulent,magnetizeddiskcreateaglobal,well-orderedmagneticfieldthatcancoupletotheblackholerotationand2)howdoestheaccretiondiskloadthefieldlineswithplasma?
4
DavidMeier
2.BasicsofMagnetically-DominatedAccretionFlows
2.1.WHATIS
AN
MDAF?
AnMDAFisanaccretionflowinwhichthemagneticforcesdominateoverthethermalandradiationforces.Inanormalaccretiondiskmodel,theweakmagneticfieldcreatesa“magneto-rotationalinstability”(MRI)(Balbus&Hawley,1998)inwhichturbulencedominatestheangularmomentumtrans-portandtheeddyturnovertimeτturbisshorterthantheinflowtimeτinflow≡R/VR.AsteadydiskstructuredevelopsinwhichmagneticfieldcomponentsBR∼Bφ∝R−5/4andpressurescalesasp∝R−3/2.Theratioofmagnetictothermalforcesα∝BRBφ/premainsconstantat∼0.01−1.0.
Werecognizetwotypesofmagnetically-dominatedaccretionflows.Thefirstisstillturbulent,butnowtheratioofthetimescalesisreversed:τinflow<τturb.Smalleddiescontinuetotransportangularmomentum,butthelargeronesarestretchedoutintheRdirectionbeforetheyhaveachancetoturnover.Inthiscase,BR∝R−5/2andBφ∝R−1/2decoupleandp∝R−3/2,sothatmagneticstressesincreaseasRdecreases:α∝R−3/2.Wecallthistypeofflow“transitional”,becauseitconnectsaturbulentflowwithα<1toonewithα>1andtheMRIturnedoff.Ifα0isthevalueatR0,andR1istheradiuswhereαattainsunitvalue,then
R1/R0=α0−2/3
(1)
Ifα0∼0.3,asisexpectedinadvection-dominatedaccretionflows(Narayanetal.,1998),thenR1/R0∼0.5.So,iftheinteriorofanADAFbecomesmagneticallydominated,thetransitionregionwillberathernarrowinradius.InthesecondtypeofMDAF,whichisasolutionto“Gammieflow”(Gam-mie,1999),MRIturbulencehasceasedandtheinflowislaminaralongstrongmagneticfieldlines.BR∝R−3/2andBφ∝R−1arestilldecoupled.Thether-malpressurescalingdependscriticallyontheenergybalanceinthegasnow,butsimplemodelsindicatep∝R−1/2.Soα∝R−2continuestoincreaseinward,andtheflowcontinuestobecomemoremagneticallydominatedasitapproachestheblackhole.Figure1showsaschematicofourlow-statemodelandwillbediscussedmorefullybelow.
MDAF-typesolutionsareseeninMRIsimulationsonlyintheplungingregionveryneartheblackhole,notouttodistancesaslargeas∼100rg.Why?Thereasonmaybetheassumptionimplicitinthesimulationsthattheflowisradiativelyinefficient.ThismaybethecaseforR100rg(whererg≡GM/c2);inthiscasethetemperatureremainsT5×109K.However,insidethisradiuselectronsradiatecopiouslybysynchrotron,pairproduction,andotherrelativisticprocesses.WhileADAFmodelsassumethattheiontemperaturecanremainhot(Ti∼1012K(R/rg)−1),ifthereisstrongcouplingbetweenionsandelectrons,theionswillcooltothe109Ktemperatureas
Meier.tex;2/02/2008;17:48;p.4
Magnetically-DominatedAccretionFlows
5
Figure1.SchematicdiagramoftheMDAFmodelforGRS1915+105.PowerspectrumdataaretakenfromMorganetal.(1997).Acooldiskfitsthepowerspectruminthehighstate(left)whennojetisproduced.Inthehardstate(right)wenotonlyneedanADAF(extendedcorona)butalsoanMDAF(inward-facingmagnetosphere)toproducethefewHzcutoffandQPO,andanoutward-facingmagnetospheretoproducethejet.Thejetwillbelaunchedfromthetransitionradiusnear∼100rg.TheinputandoutputpowersPi,jcorrespondtothoseintheMalzacetal.model.AnMDAFisalsoexpectedinsomeintermediateaccretionstateswhenthecooldiskisstilltruncatedataradius>rg.
well.Itisoftenassumedthatsuchcoolingwouldleadonceagaintoageo-metricallythin,opticallythickdisk.However,thesemodelsshowthatthereisanothersolution:cool,butstillopticallythinflowalongstrongmagneticfieldlines.It,therefore,isextremelyimportanttobeginperformingMRIsimulationswitharealenergyequation,includingseparateevolutionoftheionsandelectrons.2.2.WHATARE
THE
PROPERTIES
OF
MDAFS?
TheinnerMDAFisanextraordinarilyinefficientflow.Itisanearly-radialin-spiral,geometricallythickbecauseofmagneticpressuresupport(Meier,2004).VirtuallyallorbitalangularmomentumistransferredouttoR1alongthestrongfieldlines.Theplasmaexperiencesonlycompressionalheatingandradiativecoolingbyelectronsandcouldremainquitecool;themajorityofthe
Meier.tex;2/02/2008;17:48;p.5
6
DavidMeier
gravitationalenergyreleasedisconvertedintoradialinfallkineticenergy,notheat.
Becausethemagneticradialchannelsarepotentiallydistinct,theflowmaybreakupintoinhomogeneous“spokes”.AsignatureofanMDAFmaybeaquasi-periodicoscillationatoneormoreoftwotransitionradiusfrequencies:1)theorbital/Alfvenfrequency
νA=VA/2πR1=1.1Hz(M•/10M⊙)−1
and2)theMHDslowmode(“organpipe”)frequency
νS=VS/2πR1≈CS/2πR1=0.02−0.13νA
(3)(2)
or∼20−140mHzfora10M⊙blackhole,dependingontheazimuthallengthoftheresonatingmagnetictubes.BecauseνSisexcitedacousticallynearR1alongthelengthofthesetubes,itmaybecharacterizedbymultipleharmon-ics,whereastheorbital/Alfvenmodeshouldberatherpure.
Themagneticfieldlinesextendinginwardtowardtheblackholemaytapthehole’srotationalenergyiftheypenetratetheergosphere.However,ingen-eraltheholerotationratewillnotmatchthe,usuallyslower,νA.Onethereforemightexpectanepisodicinteraction,wherethefieldenterstheergosphere,iswounduprapidly,reconnectsinaseriesofrapidflaresseparatedbytheergosphererotationtime,andfinallypullsbackfromtheholeforaseculartime.ThebehaviorofSgrAattheGalacticcenter(Genzeletal.,2003)isverysimilartowhatmightbeexpectedfromarotatingblackhole/MDAFinteraction.
Inadditiontoaninnermagnetosphereofclosedfieldlinesreachingtowardtheblackhole,therealsomaybeopenfieldlinesextendingfromR1toinfinity(seeFig.1andMeier,2004).Thetransitionradius,therefore,hasallthepropertiesnecessarytolaunchajet:thebaseoflarge-scale,open,rotatingmagneticfieldlinesbeingloadedwithhotADAFmaterial.ExcessangularmomentumisdepositedatR1bytheradialfieldlinesthatconnectperiodicallytotheblackholeergosphere.AnoutflowingMHDwind/jetwouldbeagoodcandidateforcarryingoffthisexcessangularmomentum.
3.Discussion
3.1.MDAFS
ANDTHE
LOW/HARD(PLATEAU)STATE
OF
XRBS
WhenthetransientX-raybinary(XRB)sourceGRS1915+105isinthesoftstateandnotproducingajet,itsphotonspectrumisdominatedbyacoolthermalspectrum,anditspowerspectrumisaratherfeaturelesspowerlawofdP/dν∝ν−4/3.Whenthesourcebeginstoproduceasteadyjet,itenters
Meier.tex;2/02/2008;17:48;p.6
Magnetically-DominatedAccretionFlows
7
alow/hardstateinwhichthephotonemissionisdominatedbyanon-thermalspectrum.Andthepowerspectrumdevelopsbandwidth-limitednoise(aflat(dP/dν∝ν0shoulderwithasteepcutoffabove∼3Hz)andaQPOat1-3Hz.Itisnaturaltoassociatethenon-thermalphotonspectrumandbandwidth-limitednoisewiththeopticallythin,turbulentADAFthathasformedinthecenterofthedisk.ButwhatproducestheQPO,andwhywouldtheADAFbebandwidth-limited?Whydoesitsturbulencenotextendallthewaytothenaturalfrequenciesneartheblackhole(∼100Hz)?
TheinnerMDAFmodelprovidesnaturalanswerstothesequestions.WhilethethinaccretiondiskistruncatedbytheADAFat,perhaps,∼1000rg,theADAFitselfistruncatedatR1∼100rgbytheMDAF,cuttingofftheADAFturbulenceaboveafewHz.TheslopeofthiscutoffmayrepresentthehighfrequencytailoftheturbulencespectrumnearR1.TheQPOisproducedbythemagneticfluxtubesthatstretchtowardtheblackholeandrotateatroughlytheorbitalR1frequency—againafewHz.
Thepowerspectrumateachdiskradiusshouldbedominatedbyarathernarrowly-peakedlocalspectrum(Maron&Blackman,2002).Wethereforecanapproximatethetotaldiskpowerspectrumbyassumingthelocalspec-trumtobeadeltafunctionandsimplyplottingthevariationoftheturbu-lencestrengthwithradiusagainstthevariationoftheprincipallocal(orbital)frequencywithradius:
P[r(ν)]=(2π∆RδH)ρVturb(R)2
(4)
where∆R∼RistheannulusoverwhichρandVturbremainroughlyconstant,andδHistheskindepthoverwhichtheturbulenteddiescanbeseenbytheobserver(roughlytheopticaldepth).Foranα-disk(Shakura&Sunyaev,1973),wefindP(r)∝R1/2∝ν−1/3,ordP/dν∝ν−4/3,inagreementwithGRS1915+105inthehighstate.However,inthelowstate,forasimple
˙∝R−1)(Esinetal.,1997),wefindthatdP/dν∝evaporativeADAFmodel(M
ν−2/3,whichisnotflat.InordertoobtaindP/dν∝ν0,weneedtoassumea
˙∝R−2.DetailedsteeperrateofevaporationofthethindiskintotheADAF:M
modelingofthepowerspectrumasdiskturbulenceatdifferentradiimay,therefore,becomeanimportantdiagnosticofconditionsintheopticallythinportionoftheaccretionflow,ADAFandMDAFalike.
Figure1showsaschematicpictureofGRS1915+105inthesoftandhardstates,thecorrespondingpowerspectra,andenergyinputstoandoutputsfromthetransitionregion.3.2.RELATION
TO
PRESENTATIONS
ON
XRBS
ATTHIS
MEETING
Fenderetal.(2004)haveproposedaphenomenologicalmodelforjetproduc-tioninwhichthejetspeedincreasesastheinnerdiskradiusdecreases.Thismodelexplainswhystrongjetoutburstsareseenwhenthedisktransitions
Meier.tex;2/02/2008;17:48;p.7
8
DavidMeier
tothehigh/softstateandnotwhenittransitionstothelow/hardstate:thejetspeeddecreaseswithtimeinthelattercase,resultinginnoformationofashock.
ThismodelfitswellwiththeMDAFscenario.Weidentifythelow/hardstateasoneinwhichthecoolaccretiondiskcompletelyevaporatesbeforetheADAFtransitionsintoanMDAF,i.e.forR>R1.Inthiscase,nearthecentralengine,thejetspeedissimplytheescapespeedfromthetransitionradius,or
Vjet∼2GM/R1
(5)
whichgivesanon-relativisticjetofVjet∼0.1c.Eventually,astheaccretionrateisincreased,thecooldiskbeginstoextendinside∼100rg,andtheADAFchangesfromanaccretionflowinitsownrighttosimplyacoronaaboveadensecooldisk.TheADAFnolongerextendsinsidethetruncatedcooldisk;thatregionisfilledwiththeMDAFonly,extendingfromtheADAFcoronainward.Thisbeginsthemovetowardthehighstatealongtheupperhorizontalbranchintheintensity/hardnessplane:thehardADAFemissionbeginstobesuppressed,thethermalemissionfromthecooldiskgainsinstrength,theradiusR1wherethetransitiontoMDAFoccursnowfollowsthecooldisktruncationradius.Thejetvelocityfromequation(5)increasesasthedisktruncationradiusdecreases.EventuallyR1reachesallthewaytotheblackholehorizon,andtheMDAFisswallowed.Thisturnsoffthejet,butnotbeforeitsvelocityreachesclosetocasR1→rH,thehorizonradius.Itisthisfastjetthatcreatestheshockandoutburstthatweobserve.
Malzacetal.(2004)alsohaveinterpretedthevariabilityofXTEJ1118+480ascouplingbetweenthecoronaandthejetthroughacommonreservoirwherelargeamountsofaccretionpowerarestored.IntheMDAFmodelweidentifythetransitionregionatR1asthisreservoir.Energyandangularmomentuminputintothisregioncomesfromtwosources:theaccretionflowfromoutsideandthemagneticcouplingtotheblackholefrominsideR1.Theoutputpoweristhejetproductionthatoccursatthisradius.Itisimportanttonotethatthepredictedtemperatureatthistransitionregionisoforderafew×109K,anditliesat∼100rginthelowstate,butcanmoveinwardastheaccretionrateincreases(seeabove).3.3.MDAFS
AND
LOW-LUMINOSITYAGN
Blackholeaccretioninactivegalacticnuclei(AGN)isexpectedtoactsimi-larlytothatinXRBsystems:brightSeyfertandquasarobjectsarebelievedtobeinasoftstatewhilethoseAGNwithoutstrongopticallineemission(low-luminosityAGN[LLAGN],FRIradiogalaxies,SgrA)arebelievedtobeinalow/hardstate.Whilethereissometimingdataavailableontheselatterobjectes,adetailedcomparisonwiththeMDAFmodelisnotpossible
Meier.tex;2/02/2008;17:48;p.8
Magnetically-DominatedAccretionFlows
9
atthistimeasaQPO-producingplateaustatehasnotyetbeenidentified.OurdiscussionofMDAFsinAGNthereforewillbemorespeculative.
LLAGNdoindeedshowbandwidth-limitednoise,andthecutoff/breakathighfrequencysometimesisusedasanindicatorofblackholemass,withτbr≈7.7d(M•/107M⊙),whereτbristhetimescale,indays,wherethebreakoccursintheAGNX-raypowerfluctuationspectrumPapadakis(2004).TheMDAFmodelprovidesaphysicalreasonwhythisadhocscalingofthebreakindifferentsystemsisareasonableblackholemassindicator.Inthemodelthefrequencyofthisbreakwillbeequalto,orslightlygreaterthan,νA(equation2),soτbr=1/νA≈10d(M•/107M⊙).
AGNalsodisplayanotherpropertysimilartothatshownbyX-raybi-naries,andtheMDAFmodelprovidesthesameexplanationthereaswell.JetsproducedbyquasarsandmanySeyfertstendtobequiterelativistic,evenwithinonlyaparsecfromtheblackholecore.Theythereforemaybelaunchedandacceleratedratherclosetothecentralblackhole.Thissugges-tionissupportedbysemi-analyticjetaccelerationmodels,whichsuggestamagneticfootpointonlyafewgravitationalradiifromtheholefor3C345(Vlahakis&Konigl,2004).However,jetsproducedbyLLAGNandFRIs(andtheircounterparts,theBLLacertaeobjects)areeitherlessrelativisticorshownomotionatall.AsimilarmodelforaccelerationoftheNGC6251jetyieldsaninnerfoot-pointof∼34rgfora6×108M⊙blackhole(Vlahakis&Konigl,2004).Furthermore,M87showssignificantcollimationonscalesof60−200rg(Birettaetal.,2002),anditsjetspeedatadistanceof0.16pcfromthecoreisonly0.1c.Yet,atkiloparsecdistances,M87showssuperluminalmotionsupto6c.JetsinAGNsystemsidentifiedwiththelow/hardstateappeartobelaunchedwithsmallervelocitiesandatlargerdistancesfromthecentralblackhole.
Itappearspossible,then,thatthejet-productionregioninLLAGNandFRIobjectsalsomaylooklikethatinFigure1,withthelaunchpointlyingmanytensofgravitationalradiifromtheblackhole.Onlythroughcontinual,andpersistentaccelerationbytheblackholeoverlargeverticaldistances(manyparsecstokiloparsecs)dojetsinlow/hardstateAGNachievetherelativisticspeedsobservedveryfardownstreamoftheaccretiondisk.
4.Conclusions
InterpretationofthephotonandpowerspectraofblackholesystemslikeGRS1915+105leadstoanewmagnetically-dominatedaccretionflow(MDAF)modelforthelow/hardstatewiththreedistinctdiskregions:
1.Asinpreviousmodels,theouterregionofthediskisageometricallythin,opticallythick,andcoolturbulentdisk,drivenbytheMRI.
Meier.tex;2/02/2008;17:48;p.9
10
DavidMeier
2.Likewise,atintermediateradii(∼100−1000rg)thereisaone-temperature,advection-dominated,turbulentaccretionflow(ADAF)disk/coronathatisgeometricallythick,opticallythin,andhot.Anevaporationrateinto
˙∝R−2ismoreconsistentwiththepowerthiscoronathatscalesasM
spectrumthanothermodels.3.Thestructureinside∼100rgdistinguishesthismodelfromothers:attheradiuswherecoolingbyrelativisticelectronsbecomesimportant,theADAFtransitionstoanMDAFwithα>>1.Theinflowisextremelyinefficient,non-turbulentandnearlyradialalongstrongmagneticfieldlines—essentiallyaninward-facingmagnetosphere.ThenarrowannuluswheretheflowtransitionsfromADAFtoMDAFisanidealsiteforopenfieldlinesandthelaunchinganMHD-poweredjet.Weidentifythebandwidth-limitednoisethatappearsinthelow/hardstateastheADAF’sMRIturbulenceviewedthroughtheopticallythinflow.TheMDAFmodelpredictstheobservedtruncationofthatnoiseatafewHzandtheappearanceofastrongQPOatthesameplace,aswellastheverylowfrequencyQPOsat0.01-0.1Hz.Finally,theMDAFmodelisconsistentwiththepheomenologicalmodelsofFenderetal.(2004)andMalzacetal.(2004)andprovidesaphysicalconnectionbetweenthemandblackholeaccretiontheory.Inparticular,extensionofthismodeltoincludeanMDAFinsidealltruncateddisksnaturallypredictsthevariationinjetspeedwithinnerradiusdeducedbyFenderetal.(2004).
Themodelsuggestsanewinterpretationofthepowerspectrumofblackholecandidates:likethephotonspectrum,eachsmallrangeinfrequency∆νiscontributedbyagivenannulus∆Rintheaccretiondisk,withthecentralfre-quencycorrespondingtotheKeplerianfrequencyatthatradius.Thespectralslopesareduenottothephysicsoftheturbulenceitselfbutrathertovariationsindiskstructurewithradius.OnlythecutoffatafewHzisindicativeofthe(highfrequencyendofthe)localpowerspectrumthere.
Acknowledgements
TheauthorisespeciallygratefultoT.MacaroneandR.Fenderfororganizingthisconferenceonblackholeaccretiononallmassscales.Emphasizingthesimilaritiesandscalingofblackholesystemscontributesgreatlytotheirover-allunderstanding.Theauthorissupported,inpart,byaNASAAstrophysicsTheoryProgramgrant.ThisresearchwasperformedattheJetPropulsionLaboratory,CaliforniaInstituteofTechnology,undercontracttoNASA.
Meier.tex;2/02/2008;17:48;p.10
Magnetically-DominatedAccretionFlows
11
References
Balbus,S.A.&Hawley,J.F.Rev.Mod.Phys.,70:1–53,1998.Biretta,J.A.,etal.Ap.J.,520:621–626,1999.
Biretta,J.A.,etal.NewAstr.Rev.,46:239–45,2002.Blandford,R.D.M.N.R.A.S.,176:465,1976.Esin,A.A.etal.Ap.J.,4:865,1997.Fender,R.P.etal.Ap.J.,519:L165,1999.
Fender,R.P.etal.M.N.R.A.S.,355:1105–1118,2004.Gammie,C.F.Ap.J.,522:L57–L60,1999.Genzel,R.etal.Nature,425:934–937,2003.
Goldreich,P.&Julian,W.H.Ap.J.,157:869–880,1969.Koide,S.,etal.Science,295:1688,2002.Lovelace,R.Nature,262:9,1976.
Malzac,J.etal.M.N.R.A.S.,351:253,2004.
Maron,J.&Blackman,E.G.Ap.J.,566:L41–L44,2002.Meier,D.L.Ap.J.,548:L9–L12,2001.
Meier,D.L.Proc.oftheX-rayTimingMeeting:Rossi&Beyond,eds.P.Kaaret&J.Swank,
inpress,2004.
Meier,D.L.,Koide,S.,&Uchida,Y.Science,291:84–92.Migliari,S.etal.M.N.R.A.S.,342:L67,2003.
Misner,C.,Thorne,K.S.,&Wheeler,J.A.Gravitation,Freeman,1973.Morgan,E.H.etal..Ap.J.,482:993–1010,1997.
Narayan,R.,Mahadevan,R.,&Quataert,E.TheTheoryofBlackHoleAccretionDisks,eds.
Abramowicz,Bjornsson,&Pringle,CambridgeUniv.Press,Cambridge,1998.Papadakis,I.E.M.N.R.A.S.,348:207,2004.
Ruderman,M.A.&Sutherland,P.G.Ap.J.,196:51–72,1975.Shu,F.etal..Ap.J.,429:781–796,1994.
Shakura,N.I.,&Sunyaev,R.A.Astron.Astroph.,24:337–355,1973.
Thorne,K.S.,Price,R.,&MacDonald,D.A.BlackHoles:TheMembraneParadigm,Yale
Univ.Press,NewHaven,1986.
Vlahakis,N.&Konigl,A.Ap.J.,605:656–61,2004.
Wheeler,J.C.,Meier,D.L.,&Wilson,J.Ap.J.,568:807–819,2002.
Meier.tex;2/02/2008;17:48;p.11
Meier.tex;2/02/2008;17:48;p.12
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- huatuo0.cn 版权所有 湘ICP备2023017654号-2
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务