初一数学有理数知识点
查字典数学网为大伙儿整理了初一数学有理数知识点的相关内容,期望能生一臂之力。
数学有理数知识点:
一、目标与要求
1.了解正数与负数是从实际需要中产生的。
2.能正确判定一个数是正数依旧负数,明确0既不是正数也不是负数。
3.明白得有理数除法的意义,熟练把握有理数除法法则,会进行有理数的除法运算;
4.了解倒数概念,会求给定有理数的倒数;
5.通过将除法运算转化为乘法运算,培养学生的转化的思想;通过有理数的除法
二、重点
正、负数的概念;
正确明白得数轴的概念和用数轴上的点表示有理数;
有理数的加法法则;
除法法则和除法运算。
三、难点
负数的概念、正确区分两种不同意义的量;
数轴的概念和用数轴上的点表示有理数;
异号两数相加的法则;
依照除法是乘法的逆运算,归纳出除法法则及商的符号的确定
四、知识点、概念总结
1.正数:比0大的数叫正数。
2.负数:比0小的数叫负数。
3.有理数:
(1)凡能写成q/p(p,q为整数且p不等于0)形式的数,差不多上有理数。正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。
注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;
(2)有理数的分类:
4.数轴:数轴是规定了原点、正方向、单位长度的一条直线。
5.相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数依旧0;
(2)相反数的和为0等价于a+b=0等价于a、b互为相反数。
6.绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;
注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(2)绝对值可表示为:
绝对值的问题经常分类讨论;
7.有理数比大小:
(1)正数的绝对值越大,那个数越大;
(2)正数永久比0大,负数永久比0小;
(3)正数大于一切负数;
(4)两个负数比大小,绝对值大的反而小;
(5)数轴上的两个数,右边的数总比左边的数大;
(6)大数-小数0,小数-大数0.
8.互为倒数:乘积为1的两个数互为倒数;
注意:0没有倒数;若a0,那么a的倒数是1/a;若ab=1等价于a、b互为倒数;若ab=-1等价于a、b互为负倒数。
9. 有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得那个数。
10.有理数加法的运算律:
(1)加法的交换律:a+b=b+a ;
(2)加法的结合律:(a+b)+c=a+(b+c)。
11.有理数减法法则:减去一个数,等于加上那个数的相反数;即a-b=a+(-b)。
12.有理数乘法法则:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘;
(2)任何数同零相乘都得零;
(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。
13. 有理数乘法的运算律:
(1)乘法的交换律:ab=ba;
(2)乘法的结合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac 。
14.有理数除法法则:除以一个数等于乘以那个数的倒数;注意:零不能做除数,即a/0无意义。
15.有理数乘方的法则:
(1)正数的任何次幂差不多上正数;
(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n ,当n为正偶数时:(-a)n =an 或(a-b)n=(b-a)n 。
16.乘方的定义:
(1)求相同因式积的运算,叫做乘方;
(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;
17.科学记数法:
把一个大于10的数记成a10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法。
18.近似数的精确位:一个近似数,四舍五入到那一位,就说那个近似数的精确到那一位。
“教书先生”可能是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当如何说也确实是让国人景仰甚或敬畏的一种社会职业。只是更早的“先生”概念并非源于教书,最初显现的“先生”一词也并非有传授知识那般的含义。《孟子》中的“先生何为出此言也?”;《论语》中的“有酒食,先生馔”;《国策》中的“先生坐,何至于此?”等等,均指“先生”为父兄或有学问、有德行的长辈。事实上《国策》中本身就有“先生长者,有德之称”的说法。可见“先生”之原意非真正的“教师”之意,倒是与当今“先生”的称呼更接近。看来,“先生”之本源含义在于礼貌和尊称,并非具学问者的专称。称“老师”为“先生”的记载,首见于《礼记?曲礼》,有“从于先生,不越礼而与人言”,其中之“先生”意为“年长、资深之传授知识者”,与教师、老师之意差不多一致。
观看内容的选择,我本着先静后动,由近及远的原则,有目的、有打算的先安排与幼儿生活接近的,能明白得的观看内容。随机观看也是不可少的,是相当有味的,如蜻蜓、蚯蚓、毛毛虫
等,小孩一边观看,一边提问,爱好专门浓。我提供的观看对象,注意形象逼真,色彩鲜亮,大小适中,引导幼儿多角度多层面地进行观看,保证每个幼儿看得到,看得清。看得清才能说得正确。在观看过程中指导。我注意关心幼儿学习正确的观看方法,即按顺序观看和抓住事物的不同特点重点观看,观看与说话相结合,在观看中积存词汇,明白得词汇,如一次我抓住时机,引导幼儿观看雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么模样的,有的小孩说:乌云像大海的波浪。有的小孩说“乌云跑得飞速。”我加以确信说“这是乌云滚滚。”当幼儿看到闪电时,我告诉他“这叫电光闪闪。”接着幼儿听到雷声惊叫起来,我抓住时机说:“这确实是雷声隆隆。”一会儿下起了大雨,我问:“雨下得如何样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观看,让幼儿把握“倾盆大雨”那个词。雨后,我又带幼儿观看晴朗的天空,朗诵自编的一首儿歌:“蓝天高,白云飘,鸟儿飞,树儿摇,太阳公公咪咪笑。”如此抓住特点见景生情,幼儿不仅印象深刻,对雷雨前后气象变化的词语学得快,记得牢,而且会应用。我还在观看的基础上,引导幼儿联想,让他们与以往学的词语、生活体会联系起来,在进展想象力中进展语言。如啄木鸟的嘴是长长的,尖尖的,硬硬的,像大夫用的手术刀―样,给大树开刀治病。通过联想,幼儿能够生动形象地描述观看对象。19.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫那个近似数的有效数字。
唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义差不多相去甚远。而对那些专门讲授“武事”或讲解“经籍”者,又称“讲师”。“教授”和“助教”均原为学官称谓。前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,要紧协助国子、博士培养生徒。“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显要,也称得上朝廷要员。至此,不管是“博士”“讲师”,依旧“教授”“助教”,其今日教师应具有的差不多概念都具有了。20.混合运算法则:先乘方,后乘除,最后加减。
初一数学有理数知识点的相关内容就为大伙儿介绍到这儿了,期望能关心到大伙儿。