您的当前位置:首页正文

排列组合的常见题型及其解法

来源:华佗小知识
大毛毛虫★倾情搜集★精品资料

排列组合的常见题型及其解法

李锋

排列、组合的概念具有广泛的实际意义,解决排列、组合问题,关键要搞清楚是否与元素的顺序有关。复杂的排列、组合问题往往是对元素或位置进行限制,因此掌握一些基本的排列、组合问题的类型与解法对学好这部分知识很重要。 一. 特殊元素(位置)用优先法

把有限制条件的元素(位置)称为特殊元素(位置),对于这类问题一般采取特殊元素(位置)优先安排的方法。

例1. 6人站成一横排,其中甲不站左端也不站右端,有多少种不同站法?

分析:解有限制条件的元素(位置)这类问题常采取特殊元素(位置)优先安排的方法。

解法1:(元素分析法)因为甲不能站左右两端,故第一步先让甲排在左右两端之间的

15任一位置上,有A4种站法;第二步再让其余的5人站在其他5个位置上,有A5种站法,15故站法共有:A4=480(种) A5 解法2:(位置分析法)因为左右两端不站甲,故第一步先从甲以外的5个人中任选两

24人站在左右两端,有A5种;第二步再让剩余的4个人(含甲)站在中间4个位置,有A4种,24故站法共有:A5A4480(种)

二. 相邻问题用捆绑法

对于要求某几个元素必须排在一起的问题,可用“捆绑法”:即将这几个元素看作一个整体,视为一个元素,与其他元素进行排列,然后相邻元素内部再进行排列。 例2. 5个男生和3个女生排成一排,3个女生必须排在一起,有多少种不同排法? 解:把3个女生视为一个元素,与5个男生进行排列,共有A6种,然后女生内部再进行排列,有A3种,所以排法共有:A6A34320(种)。

三. 相离问题用插空法

元素相离(即不相邻)问题,可以先将其他元素排好,然后再将不相邻的元素插入已排好的元素位置之间和两端的空中。

例3. 7人排成一排,甲、乙、丙3人互不相邻有多少种排法?

解:先将其余4人排成一排,有A4种,再往4人之间及两端的5个空位中让甲、乙、丙插入,有A5种,所以排法共有:A4A51440(种)

四. 定序问题用除法

对于在排列中,当某些元素次序一定时,可用此法。解题方法是:先将n个元素进行全排列有An种,m(mn)个元素的全排列有Am种,由于要求m个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到调序的作用,即若n个元素排成一列,其中

nAnm个元素次序一定,则有m种排列方法。

Am63634343nm

例4. 由数字0、1、2、3、4、5组成没有重复数字的六位数,其中个位数字小于十位数字的六位数有多少个?

解:不考虑限制条件,组成的六位数有A5A5种,其中个位与十位上的数字一定,所

大毛毛虫★倾情搜集★精品资料

15大毛毛虫★倾情搜集★精品资料

以所求的六位数有:

15A5A5 300(个) 2A2

五. 分排问题用直排法

对于把几个元素分成若干排的排列问题,若没有其他特殊要求,可采取统一成一排的方法求解。

例5. 9个人坐成三排,第一排2人,第二排3人,第三排4人,则不同的坐法共有多少种?

解:9个人可以在三排中随意就坐,无其他限制条件,所以三排可以看作一排来处理,

9不同的坐标共有A9种。

六. 复杂问题用排除法

对于某些比较复杂的或抽象的排列问题,可以采用转化思想,从问题的反面去考虑,先求出无限制条件的方法种数,然后去掉不符合条件的方法种数。在应用此法时要注意做到不重不漏。

例6. 四面体的顶点和各棱中点共有10个点,取其中4个不共面的点,则不同的取法共有( ) A. 150种 B. 147种 C. 144种 D. 141种

4 解:从10个点中任取4个点有C10种取法,其中4点共面的情况有三类。第一类,取4出的4个点位于四面体的同一个面内,有4C6种;第二类,取任一条棱上的3个点及该棱

对棱的中点,这4点共面,有6种;第三类,由中位线构成的平行四边形(其两组对边分别平行于四面体相对的两条棱),它的4个点共面,有3种。以上三类情况不合要求应减掉,所以不同的取法共有:C104C663141(种)。

七. 多元问题用分类法

按题目条件,把符合条件的排列、组合问题分成互不重复的若干类,分别计算,最后计算总数。

例7. 已知直线axbyc0中的a,b,c是取自集合{-3,-2,-1,0,1,2,3}中的3个不同的元素,并且该直线的倾斜角为锐角,求符合这些条件的直线的条数。

44a0,即a,b异号。 b2x2y0,xy0) (1)若c=0,a,b各有3种取法,排除2个重复(3x3y0,,

解:设倾斜角为,由为锐角,得tan故有:3×3-2=7(条)。

(2)若c0,a有3种取法,b有3种取法,而同时c还有4种取法,且其中任意两条直线均不相同,故这样的直线有:3×3×4=36(条)。 从而符合要求的直线共有:7+36=43(条)

八. 排列、组合综合问题用先选后排的策略

处理排列、组合综合性问题一般是先选元素,后排列。

例8. 将4名教师分派到3所中学任教,每所中学至少1名教师,则不同的分派方案共有多少种?

解:可分两步进行:第一步先将4名教师分为三组(1,1,2),(2,1,1),(1,

大毛毛虫★倾情搜集★精品资料

大毛毛虫★倾情搜集★精品资料

211C4C2C132,1),共有:(种),第二步将这三组教师分派到3种中学任教有6A3种2A2211C4C2C13方法。由分步计数原理得不同的分派方案共有:A336(种)。因此共有2A236种方案。

九. 隔板模型法

常用于解决整数分解型排列、组合的问题。

例9. 有10个三好学生名额,分配到6个班,每班至少1个名额,共有多少种不同的分配方案?

解:6个班,可用5个隔板,将10个名额并排成一排,名额之间有9个空,将5个隔

5板插入9个空,每一种插法,对应一种分配方案,故方案有:C9126(种)

年级 内容标题 主题词 供稿老师 录入

高中 学科 数学 版本 期数 统考试题与题解 栏目名称 专题辅导 审稿老师 一校 胡丹 二校 审核 排列组合的常见题型及其解法 分类索引描述 排列组合的常见题型及其解法 韩秋荣 分类索引号 G.622.475 大毛毛虫★倾情搜集★精品资料

因篇幅问题不能全部显示,请点此查看更多更全内容