(1/2)*x^(-1/2)。因为√x=x^(1/2),可以看成是指数为1/2的指数函数。套用求导公式:(x^k)'=k*[x^(k-1)],所得根号x的导数是按照求导公式:(x^n)'=n*x^(n-1),所以根号x的导数是1/2*x^(-1/2)。导数(Derivative)是微积分中的重要基础概念。导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点可导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。